Featured Research

from universities, journals, and other organizations

Study Looks To Nuclear Energy As Micro-Scale Fuel

Date:
July 6, 1999
Source:
University Of Wisconsin, Madison
Summary:
A trio of University of Wisconsin-Madison engineers have a new scale in mind for nuclear energy: Rather than huge plants powering entire cities, they envision tiny batteries turning a single microscopic gear.

MADISON - A trio of University of Wisconsin-Madison engineers have a new scale in mind for nuclear energy: Rather than huge plants powering entire cities, they envision tiny batteries turning a single microscopic gear.

Extremely small amounts of radioactive material already perform functions in smoke detectors, photocopiers, pacemakers and other devices. But the researchers are studying whether even tinier amounts might provide a power source for the tiny experimental machines being built in laboratories worldwide.

Nuclear engineering professors James Blanchard and Douglass Henderson, along with electrical engineering professor Amit Lal, are leading the three-year, $450,000 project. The U.S. Department of Energy, which looks at potential new uses for nuclear energy, supports the research.

Known as micro-electromechanical structures, of MEMS devices, they tend to be smaller than a width of human hair, about 60 to 70 microns, Blanchard said. Because of their small size, they can perform extremely precise functions in applications such as medical equipment, environmental management and automobiles.

The most common MEMS device is the tiny sensor that tells auto air bags when to deploy. But MEMS technology is limited by the lack of a reasonable power source that is lightweight and intense enough to run such a small device.

"There's nothing being studied like this on this scale," Blanchard said. "The key issue for us is the size of the radiation source."

Using extremely small amounts of radioactive material in products is not new, Blanchard said. For example, smoke detectors function with the aid of a radioactive substance that electrically charges the air. Some photocopiers use a strip of radioactive material to eliminate the static charge in sheets of paper.

Exposure to radioactive materials is by nature hazardous and their use is closely regulated. But the amount of material required for these applications is so minuscule it would not pose safety risks or require regulation, he said. The traces of radioactive material are encapsulated so no one is exposed to the radiation.

The idea is to harness the natural decay of radioactive material and convert it into a power source, without use of a reaction such as fission or fusion, Blanchard said. By keeping the material securely contained within the device, he said, the majority would decay before it leaves the product.

"We would capture the energy from that decay, and convert it into a power source that could run a sensor or tiny moving part," Blanchard said.

The energy could either be in the form of heat or charged particles, both of which could be generated in sufficient amounts to be useful on a tiny scale. Blanchard said alpha and beta particles generate high voltages.

Lal, who builds MEMS devices, said micro-machines could see many more applications once the power issue is solved. The technology has been stalled by a near-absence of power sources that can efficiently fuel something so tiny. "You would be creating a set of applications that have never been possible," he said.

For example, MEMS batteries could be used as power sources for small hand-held computing devices or micro-laboratories. Sensors could be developed to recognize "signatures" of gases from chemical plants or oil pipelines, to give early warning of leaks. It could also be used in a network of self-powered sensors to guard against chemical warfare. The tiny sensors could also be mixed right into the grease of heavy machinery to detect when maintenance is required.

"The biggest impact could be in making everyday systems more reliable, safer and smarter by integrating these sensor systems," Lal said.

The project is part of Nuclear Engineering Education Research (NEER) at the Energy Department, which primarily funds university-based projects in fission and other applications of radiation. This is part of a small category of funding that encourages potential alternative uses for nuclear energy.


Story Source:

The above story is based on materials provided by University Of Wisconsin, Madison. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wisconsin, Madison. "Study Looks To Nuclear Energy As Micro-Scale Fuel." ScienceDaily. ScienceDaily, 6 July 1999. <www.sciencedaily.com/releases/1999/07/990706070354.htm>.
University Of Wisconsin, Madison. (1999, July 6). Study Looks To Nuclear Energy As Micro-Scale Fuel. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/1999/07/990706070354.htm
University Of Wisconsin, Madison. "Study Looks To Nuclear Energy As Micro-Scale Fuel." ScienceDaily. www.sciencedaily.com/releases/1999/07/990706070354.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins