Featured Research

from universities, journals, and other organizations

Z Machine Pushed To New Limits To Test Radiation Effects

Date:
July 7, 1999
Source:
Sandia National Labs
Summary:
Researchers at the Department of Energy's (DOE) Sandia National Laboratories have pushed the Z machine, the world's most powerful X-ray source, to new limits using it to test effects of radiation on materials in experiments designed to mimic the response that would occur near a hostile nuclear explosion.

Researchers at the Department of Energy's (DOE) Sandia National Laboratories have pushed the Z machine, the world's most powerful X-ray source, to new limits using it to test effects of radiation on materials in experiments designed to mimic the response that would occur near a hostile nuclear explosion.

During their experiments, the Z machine generated more than 100 kJ of X-rays (kJ stands for kilojoules, a measure of radiated energy) at 4.8 keV (keV for kilo-electron-volt, a unit used to measure the color spectrum of X-rays). This amount of radiated energy adds significant capability for doing weapons effects experiments; other sources at this X-ray energy have produced only 10 kJ.

"We are excited that we've reached this milestone," says Chris Deeney, one of several scientists involved in the experiment. "The cessation of underground nuclear weapons tests limited testing capabilities, but experimental data are still needed to determine that weapons systems will continue to function in hostile environments. This is the closest to the 'real thing' we've ever achieved with Z-pinches."

Deeney and other Sandia researchers, including Christine Coverdale and Victor Harper-Slaboszewicz, have been using the Z machine and other sources, to determine how materials -- in this case candidate materials for a neutron generator -- respond when exposed to high levels of radiation. When a nuclear weapon detonates, it produces high levels of radiation, which can cause failure in both nearby and distant systems.

To prevent failure, weapon components and subsystems designed and built by Sandia must be certified at radiation levels determined by mission need. Testing materials at high radiation doses and dose rates, coupled with advanced computer calculations, are major steps in selecting materials for weapon components.

Information compiled from the Z machine experiments will be used to validate computer modeling. Deeney says computer models are being relied on more and more for certification of components through the Accelerated Strategic Computing Initiative (ASCI) Program since appropriate testing environments are not always available.

"If our findings are close to the computer modeling of the same event, it means the modeling is on track, giving us more confidence in what the model is telling us for regimes that we can't test," Deeney says. Since 1992, when full-scale underground nuclear testing at the Nevada Test Site was halted, scientists have been developing new ways to verify weapons' reliability without actually detonating them. Working at aboveground simulators like Sandia's Saturn and Z machine, scientists have developed X-ray sources that can be used for testing materials and parts. The powerful Z machine, in particular, has allowed for tests in a more realistic physics regime than was previously possible.

These recent experiments were a collaborative effort, not just within Sandia, but within the nuclear weapons community, Deeney says. The X-ray source development experiments on Z were sponsored by Ralph Schneider at the Defense Threat Reduction Agency (DTRA) in order to enhance unique testing capabilities within the nuclear weapons community, especially for Department of Defense areas of interest.

The Z machine is a pulsed power accelerator consisting of capacitors that, like large batteries, are charged with electricity for more than a minute. The electricity is released in 100 billionths of a second, resulting in a 50 trillion-watt, 18 million-amp pulse. This pulse converges on an array of wires, called the load, creating a plasma. This plasma collapses down onto the axis in what is known as a "Z-pinch" and radiates X-rays.

Coverdale says another milestone reached in this most recent testing with the Z machine is that the researchers used a "nested" wire technique for the wire load. This technique was developed theoretically by Sandia scientists and others at the Naval Research Laboratories and in France.

In previous experiments using titanium wire arrays, the researchers always used a single titanium wire array of up to 160 wires. This time they nestled a second array of 48 to 70 titanium wires within the first array of 96 to 140 wires, providing more stability as the wires imploded onto the axis. This added stability improves the quality of the Z-pinch, increases the X-ray power output and enhances the utility of the emitted radiation by increasing the impulse.

Nested wire arrays have been successfully used before on Z, but only with wires made out of tungsten. Those experiments produced hundreds of terawatts of X-rays to support the Inertial Confinement Fusion program. The researchers used titanium in their radiation testing experiments because they provide a higher power and energy X-ray source.

As part of these tests, candidate materials for neutron generators were placed at various distances from the source, usually one-and-a-half to four feet. Using diagnostics to determine how much stress was produced at each distance, and by examining the materials after the X-ray burst, the researchers can see the effects of the radiation.

"We are specifically looking for damage in the materials, checking to see if the radiation causes damage, and the type of damage. For example, we want to know if the material flakes, cracks, or breaks apart," Coverdale says. "Testing on the Z machine provides us with a valuable tool in figuring out what materials will survive high radiation exposures."

Sandia is a multiprogram DOE laboratory, operated by a subsidiary of Lockheed Martin Corp. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major research and development responsibilities in national security, energy, and environmental technologies and economic competitiveness.


Story Source:

The above story is based on materials provided by Sandia National Labs. Note: Materials may be edited for content and length.


Cite This Page:

Sandia National Labs. "Z Machine Pushed To New Limits To Test Radiation Effects." ScienceDaily. ScienceDaily, 7 July 1999. <www.sciencedaily.com/releases/1999/07/990707072235.htm>.
Sandia National Labs. (1999, July 7). Z Machine Pushed To New Limits To Test Radiation Effects. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/1999/07/990707072235.htm
Sandia National Labs. "Z Machine Pushed To New Limits To Test Radiation Effects." ScienceDaily. www.sciencedaily.com/releases/1999/07/990707072235.htm (accessed August 23, 2014).

Share This




More Matter & Energy News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins