Featured Research

from universities, journals, and other organizations

Fast And Efficient Algorithms Handle Nearly 10 Million Unknowns

Date:
November 2, 1999
Source:
University Of Illinois Urbana-Champaign
Summary:
By developing faster algorithms, researchers at the Center for Computational Electromagnetics at the University of Illinois have again pushed the envelope on the analysis of electromagnetic scattering, interaction and radiation phenomena. Their technique can be applied to many areas of electrical engineering, from the design of high-speed electronic circuits to the creation of high-fidelity radar cross-sections.

CHAMPAIGN, Ill. -- By developing faster algorithms, researchers at the Center for Computational Electromagnetics at the University of Illinois have again pushed the envelope on the analysis of electromagnetic scattering, interaction and radiation phenomena. Their technique can be applied to many areas of electrical engineering, from the design of high-speed electronic circuits to the creation of high-fidelity radar cross-sections.

Related Articles


"The main thrust of our work is to reduce the computational time and complexity when analyzing or synthesizing large and complicated electromagnetic systems," said Weng Chew, a U. of I. professor of electrical and computer engineering and director of the computational electromagnetics center. "We have developed a number of computational algorithms that greatly accelerate the solution of integral equations that arise in the analysis of scattering and radiation problems."

Two years ago, Chew's team could handle 2 million unknowns. By further refining the code and eliminating bottlenecks, and working with research scientist Jiming Song, the team recently solved problems with up to 9.6 million unknowns. The numerical simulation was performed using software called the Fast Illinois Solver Code. The program ran during one day on the 32-processor Silicon Graphics CRAY Origin2000(tm) computer at the U. of I.'s National Center for Supercomputing Applications. Using conventional techniques, it would have taken more than 10 years to solve the problem.

"The radar cross-section of an aircraft is a measure of how visible the aircraft is to radar, and can be used for target detection and identification purposes," Chew said. "In designing stealth technology, we want to reduce this visibility as much as possible, so we need very precise calculations."

To accurately compute the radar cross-section for a large aircraft, Chew and his colleagues first simulate the physical geometry of the aircraft's surface, then they break the resulting geometry into millions of tiny pieces, requiring meticulous and intensive electromagnetic calculations.

Fast and efficient, these algorithms can significantly reduce the turn-around time in almost any computational electromagnetic design and analysis environment. Potential applications include antenna modeling, circuit simulation, geophysical prospecting, remote sensing, wireless communication, wave propagation and bioelectromagnetics.

Chew's team -- which includes electrical and computer engineering professor Jose Schutt-Aine and postdoctoral research associate Sanjay Velamparambil -- also has assembled a cluster of 16 personal computers that can solve equivalent dense-matrix problems with up to 600,000 unknowns.

"Because the cluster costs less than $20,000, this technology could impact many branches of electrical engineering," Chew said. "Large-scale computing -- which once belonged to the realm of very expensive supercomputers -- will soon be available to researchers with much smaller budgets."


Story Source:

The above story is based on materials provided by University Of Illinois Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois Urbana-Champaign. "Fast And Efficient Algorithms Handle Nearly 10 Million Unknowns." ScienceDaily. ScienceDaily, 2 November 1999. <www.sciencedaily.com/releases/1999/11/991102064936.htm>.
University Of Illinois Urbana-Champaign. (1999, November 2). Fast And Efficient Algorithms Handle Nearly 10 Million Unknowns. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/1999/11/991102064936.htm
University Of Illinois Urbana-Champaign. "Fast And Efficient Algorithms Handle Nearly 10 Million Unknowns." ScienceDaily. www.sciencedaily.com/releases/1999/11/991102064936.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

PlayStation Now Smart TV App

PlayStation Now Smart TV App

Rumble (Jan. 27, 2015) PlayStation Now Smart TV app is coming soon and will be available on both Sony and Samsung HDTV, allowing you to play games without even a counsel! Check out the video for more info. Credit to &apos;booredatwork&apos;. Video provided by Rumble
Powered by NewsLook.com
WikiLeaks Accuses Google of Handing Over Emails to US

WikiLeaks Accuses Google of Handing Over Emails to US

AFP (Jan. 27, 2015) Whistleblowing site WikiLeaks accused Google of handing over the emails and electronic data of its senior staff to the US authorities without providing notification until almost three years later. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com
Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins