Featured Research

from universities, journals, and other organizations

University Of Cincinnati Engineers Find New Method For Detecting Cracks In Aging Aircraft Parts

Date:
November 3, 1999
Source:
University Of Cincinnati
Summary:
University of Cincinnati engineers have combined two technologies into a new method for detecting tiny cracks in aging aircraft parts before they reach the catastrophic stage.

Cincinnati -- University of Cincinnati engineers have combined two technologies into a new method for detecting tiny cracks in aging aircraft parts before they reach the catastrophic stage.

Graduate student Zhongyu Yan and Peter Nagy, associate professor of aerospace engineering, presented their results Nov. 2 during the annual meeting of the Acoustical Society of America in Columbus.

Yan and Nagy combined laser heating and ultrasonic inspection to improve the detection of fatigue cracks by a factor of ten over previously known methods. That's significant considering how difficult it can be to locate early signs of cracking.

"The material is degrading on the microscopic level. You can't really see the cracks," explained Nagy, adding that cracks move through older aircraft parts much faster than cracks in newer aircraft.

The researchers tested their method using a series of aluminum and titanium specimens with cracks ranging from .5 to 1 millimeter in length and specimens with no cracks in them. Their results indicated that the method not only found the cracks, it could measure the difference in the severity of the cracking.

Nagy's previous work focused solely on aluminum alloys which are typically used in the aircraft fuselage. The current project expands that work to titanium alloys used in engine parts. Nagy said that was a challenge, because titanium behaves differently than aluminum. In short, titanium doesn't heat up as quickly.

"Basically, we had to slow down the inspection to accommodate the more sluggish response from titanium, but the detection sensitivity is almost as good as in aluminum alloys."

As a result, the new method is more time-consuming and more expensive. So, Nagy only expects it to be used for the most critical parts.

Nagy's research is funded under a $5 million federal program to improve inspections of aging aircraft in the military. A parallel program under the Federal Aviation Administration is working to improve the safety of commercial airliners.

Nagy will also be honored during the meeting as a newly elected Fellow of the Acoustical Society of America.


Story Source:

The above story is based on materials provided by University Of Cincinnati. Note: Materials may be edited for content and length.


Cite This Page:

University Of Cincinnati. "University Of Cincinnati Engineers Find New Method For Detecting Cracks In Aging Aircraft Parts." ScienceDaily. ScienceDaily, 3 November 1999. <www.sciencedaily.com/releases/1999/11/991103080213.htm>.
University Of Cincinnati. (1999, November 3). University Of Cincinnati Engineers Find New Method For Detecting Cracks In Aging Aircraft Parts. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/1999/11/991103080213.htm
University Of Cincinnati. "University Of Cincinnati Engineers Find New Method For Detecting Cracks In Aging Aircraft Parts." ScienceDaily. www.sciencedaily.com/releases/1999/11/991103080213.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins