Featured Research

from universities, journals, and other organizations

University Of Pittsburgh Research May Lead To New Therapies For Diabetes

Date:
January 18, 2000
Source:
University Of Pittsburgh Medical Center
Summary:
In research that may aid in the development of new therapies for diabetes, University of Pittsburgh researchers have developed transgenic mice that overexpress a protein, hepatocyte growth factor (HGF), inside pancreatic islet cells, fostering growth of this cell population which is responsible for the sugar-regulating hormone insulin.

Researchers Develop Transgenic Mice That Overexpress Hepatocyte Growth Factor

PITTSBURGH, Jan. 15 -- In research that may aid in the development of new therapies for diabetes, University of Pittsburgh researchers have developed transgenic mice that overexpress a protein, hepatocyte growth factor (HGF), inside pancreatic islet cells, fostering growth of this cell population which is responsible for the sugar-regulating hormone insulin.

The transgenic mice exhibited increased beta cell proliferation, enhanced islet mass, increased total insulin production, and decreased blood sugar levels when compared to control, non-transgenic mice. These combined effects resulted in the altered mice having sustained mild low blood sugar.

The research appears in the January 15 edition of The Journal of Biological Chemistry. "This is the first time that hypoglycemia and accelerated islet growth have been demonstrated in a transgenic animal model," according to Andrew F. Stewart, M.D., professor of medicine, chief of the division of endocrinology and metabolism and senior author of the paper. "These studies demonstrate that it is possible to bioengineer pancreatic islet cells so that they proliferate at a faster than normal rate over the long term in living animals, and that doing so can lead to overproduction of insulin and thereby lead to lower blood sugar levels."

At present, the primary drug treatment for diabetes is to give drugs that increase pancreatic insulin production, or to give insulin itself. Both treatments require daily administration of oral or injectable drugs.

"This research suggests that it may some day be possible to engineer islets which can be given to patients with diabetes to allow them to simultaneously measure blood glucose and secrete the appropriate amount of insulin. We are a long way from achieving this goal at present. However, the significance of these studies is that they demonstrate the plausibility of using this approach to treat diabetes in the future," said Dr. Stewart.

Diabetes occurs when the body cannot make use of the glucose in the blood for energy because either the pancreas cannot make enough insulin or the insulin that is available is not effective. Islet cells, located in the pancreas, make and secrete hormones that help the body break down and use food. Beta cells are located in the islets and make and release insulin, which controls the level of glucose in the blood. Hypoglycemia is an indication that the level of glucose (sugar) in the blood is too low.

"Previous research has shown that the protein HGF promotes cell growth in vitro. We developed the transgenic mouse model to determine if there was a similar effect in vivo," said Adolfo Garc์a-Oca๑a, Ph.D., research associate in the division of endocrinology and metabolism and principal investigator.

Among the findings were:

* Blood glucose concentrations were significantly lower in HGF mice in both non-fasting and 24-hour fasting conditions compared with the glucose concentrations in normal mice.

* Pancreatic insulin levels were two-to seven-fold higher in the HGF transgenic mice compared with the corresponding controls.

* The volume of the islet cells was increased two-to three-fold in the HGF mice compared with the normal mice.

* The pancreatic beta cell replication rate was increased by a factor of 2.5 in HGF mice compared with normal mice.

"Most importantly, to examine the possible therapeutic role of HGF in diabetes, we studied the response of HGF mice to experimental diabetes induced by the drug streptozotocin (STZ)," said Dr. Garc์a-Oca๑a. "Normal mice developed diabetes with injections of STZ; in contrast, HGF mice showed an attenuated response to STZ, displaying only very mild diabetes three weeks after injection. This suggests that HGF could be useful in strategies focused on increasing islet mass and function in diabetics."

Others involved in the research are Karen K. Takane, Ph.D.; Mushtaq A. Syed, M.D.; and Rupangi C. Vasavada, Ph.D., from the University of Pittsburgh School of Medicine and William M. Philbrick, Ph.D., from the department of medicine at Yale University School of Medicine.

This research was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of Pittsburgh Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pittsburgh Medical Center. "University Of Pittsburgh Research May Lead To New Therapies For Diabetes." ScienceDaily. ScienceDaily, 18 January 2000. <www.sciencedaily.com/releases/2000/01/000118062940.htm>.
University Of Pittsburgh Medical Center. (2000, January 18). University Of Pittsburgh Research May Lead To New Therapies For Diabetes. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2000/01/000118062940.htm
University Of Pittsburgh Medical Center. "University Of Pittsburgh Research May Lead To New Therapies For Diabetes." ScienceDaily. www.sciencedaily.com/releases/2000/01/000118062940.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins