Featured Research

from universities, journals, and other organizations

Robotics Team Goes "Micro" To Combat Crime, Aid Rescue Efforts

Date:
March 3, 2000
Source:
Michigan State University
Summary:
The gunman is barricaded in a small room with hostages. As he calculates his next move, he fails to notice that he is not alone--not by a long shot. A handful of robots the size of Palmetto bugs move in on him, navigating floors and furniture, scaling walls and ceilings, tunneling through the ventilation system. Before he realizes what is happening, the SWAT team storms into the room...

The gunman is barricaded in a small room with hostages. As he calculates his next move, he fails to notice that he is not alone--not by a long shot. A handful of robots the size of Palmetto bugs move in on him, navigating floors and furniture, scaling walls and ceilings, tunneling through the ventilation system. Before he realizes what is happening, the SWAT team storms into the room...

Related Articles


The above sounds like a scenario dreamed up by Steven Spielberg, but is actually created by a multidisciplinary team out of Michigan State University's College of Engineering. The team of six is collaborating on a three-year, $1.6 million grant from the Defense Advanced Research Project Agency, DARPA for short, to design and build adaptable, reconfigurable micro-robots for use in law enforcement, intelligence gathering, and search and rescue.

Lal Tummala, professor of electrical engineering and manufacturing, and project coordinator, says that in a scenario such as the one described above, law enforcement officials have only a few seconds between the moment they open the door and the time in which they act. Obviously, he says, the more information they have at the time of entry, the better off they are.

The U.S. Department of Defense wants to develop a means for safe and efficient fact-finding when the environment is dangerous or inaccessible to humans. The idea is that if very small robots--no bigger than five centimeters in diameter--are equipped with cameras, thermal and infrared sensors, and microphones, they can obtain and transmit useful information about a situation before a person is required to enter the scene.

"Possibly," says Tummala, "the robots could be dropped by helicopter or shot like bullets into a building. From there, they could go about their business, gathering information without notice."

In putting together their proposal, the MSU team brainstormed numerous design ideas based upon several open-ended criteria: that the robots be manufactured inexpensively so that a large number could be dispersed and left on site, that they have excellent maneuverability and that they have the ability to communicate robot-to-robot and thus coordinate their actions. Considerations like keeping power usage to a minimum and keeping the components small enough to fit inside the five-centimeter framework provided more concrete restrictions to the group's eventual design.

The group arrived at a bipedal caterpillar-like structure that could both slink along floors and rugged terrain as well as climb vertically on stairways and walls using its suction-cup feet. According to Tummala, the use of suction to climb walls, ceilings and even glass windows was unique to Michigan State's proposal.

Dean Aslam, associate professor in the Department of Electrical and Computer Engineering, is designing the suction cup feet--what he refers to as SRF's, short for "smart robotic foot." The SRF consists of a suction cup, a pressure sensor and a vacuum pump. The sensor, mounted inside the suction cup, will signal whether the pressure is at or below atmospheric pressure, if it is below, the motor in the vacuum pump will switch on, creating a vacuum within the cup.

Other distinguishing features of the micro-robots include the use of diamond coatings and sensors. Diamond coatings result in reduced friction between components, thereby lengthening battery life, and can be applied to even the most difficult-to-reach places.

Ranjan Mukherjee, associate professor of mechanical engineering, designs and builds the robot, while Ning Xi, assistant professor in the Department of Electrical and Computer Engineering, creates the task-driven controller, which maintains stability of the robot, and commands the direction of movement.

Sridhar Mahadevan, assistant professor in the computer science and engineering department, and John Weng, associate professor in the same department, will be assisting in the cognitive development of the robots.

Mahadevan will be responsible for designing a hybrid task planner, which will provide the main software interface to control the robot. The planner comprises a high-level strategic module that can be given specific tasks, such as finding a window on the second floor of the building and taking a picture, and a lower-level tactical system, which will provide basic reflex behaviors such as avoiding obstacles. Mahadevan also studies the use of group behaviors to coordinate the actions of multiple robots and examines how the robots' performance can be improved through reinforcement learning.

Weng applies the SHOSLIF technology that he and his students have developed to help the micro-robots "see" (through the use of micro-cameras) and to learn from those visual inputs. Weng also will investigate a new learning direction for robots, which he calls "developmental learning." Weng will be employing a developmental algorithm that allows the robot to learn as it experiences throughout its "life"--from "birth" through "adulthood"--in much the same way that humans learn.

MSU is one of 11 schools in the country to receive a grant under this DARPA program. A finished product will be delivered to the Department of Defense in May 2001.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Cite This Page:

Michigan State University. "Robotics Team Goes "Micro" To Combat Crime, Aid Rescue Efforts." ScienceDaily. ScienceDaily, 3 March 2000. <www.sciencedaily.com/releases/2000/03/000303080559.htm>.
Michigan State University. (2000, March 3). Robotics Team Goes "Micro" To Combat Crime, Aid Rescue Efforts. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2000/03/000303080559.htm
Michigan State University. "Robotics Team Goes "Micro" To Combat Crime, Aid Rescue Efforts." ScienceDaily. www.sciencedaily.com/releases/2000/03/000303080559.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) — A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins