Featured Research

from universities, journals, and other organizations

UCSD Physicists Develop New Class Of Composite Materials With "Reversed" Physical Properties Never Before Seen

Date:
March 22, 2000
Source:
University Of California, San Diego
Summary:
Physicists at the University of California, San Diego have produced a new class of composite materials with unusual physical properties that scientists theorized might be possible, but have never before been able to produce in nature.

Minneapolis, MN (March 21, 2000) -- Physicists at the University of California, San Diego have produced a new class of composite materials with unusual physical properties that scientists theorized might be possible, but have never before been able to produce in nature.

The remarkable achievement, detailed in a paper that will appear in a forthcoming issue of Physical Review Letters, was announced here today at a meeting of the American Physical Society. The UCSD physicists said they expect their discovery to open up a new subdiscipline within physics and produce an array of commercial applications for this material, on which the university has applied for a patent.

"Composite materials like this are built on a totally new concept," said the two co-leaders of the UCSD team, Sheldon Schultz and David R. Smith, who announced their discovery at a news conference. "While they obey the laws of physics, they are predicted to behave totally different from normal materials and should find interesting applications."

The unusual property of this new class of materials is essentially its ability to reverse many of the physical properties that govern the behavior of ordinary materials. One such property is the Doppler effect, which makes a train whistle sound higher in pitch as it approaches and lower in pitch as it recedes. According to Maxwell's equations, which describe the relationship between magnetic and electric fields, microwave radiation or light would show the opposite effect in this new class of materials, shifting to lower frequencies as a source approaches and to higher frequencies as it recedes.

Similarly, Maxwell's equations further suggest that lenses that would normally disperse electromagnetic radiation would instead focus it within this composite material. This is because Snell's law, which describes the angle of refraction caused by the change in velocity of light and other waves through lenses, water and other types of ordinary material, is expected to be exactly opposite within this composite.

"If these effects turn out to be possible at optical frequencies, this material would have the crazy property that a flashlight shining on a slab can focus the light at a point on the other side," said Schultz. "There's no way you can do that with just a sheet of ordinary material."

He notes that the development of this new class of materials, which was financed by the National Science Foundation and the Department of Energy, is entirely consistent with the laws of physics and was predicted as a possibility in 1968 by a Russian theorist, V.G. Veselago. "But until now," Schultz adds, "no one had the material, so it couldn't be verified."

Underlying the reversal of the Doppler effect, Snell's law, and Cerenkov radiation (radiation by charged particles moving through a medium) is that this new material exhibits a reversal of one of the "right-hand rules" of physics which describe a relationship between the electric and magnetic fields and the direction of their wave velocity.

The new materials are known by the UCSD team colloquially as "left-handed materials," after a term coined by Veselago, because they reverse this relationship. What that means is physically counterintuitive-pulses of electromagnetic radiation moving through the material in one direction are composed of constituent waves moving in the opposite direction.

The UCSD physicists emphasized that while they believe their new class of composites will be shown to reverse Snell's law, the specific composite they produced will not do so at visible-light frequencies. Instead, it is now limited to transmitting microwave radiation at frequencies of 4 to 7 Gigahertz-a range somewhere between the operation of household microwave ovens (3.3 Gigahertz) and military radars (10 Gigahertz).

However, Schultz said the UCSD team will soon be attempting to verify that a composite constructed on similar principles will be able to focus and disperse microwaves in exactly the opposite manner as normal lenses. "We did not do this experiment yet," he said. "But this is what the equations predict. Physicists will understand that if our data presented in our paper are correct, given Maxwell's equations, then this will be the result."

The composite constructed by the UCSD team-which also consisted of Willie J. Padilla, David C. Vier, and Syrus C. Nemat-Nasser-was produced from a series of thin copper rings and ordinary copper wire strung parallel to the rings. It is an example of a new class of materials scientists call "metamaterials." "Even though it is composed of only copper wires and copper rings, the arrangement has an effective magnetic response to microwaves that has never been demonstrated before," said Schultz.

The idea for the new composite came from Smith, building on the work of John Pendry of Imperial College, London. In 1996, Pendry described a way of using ordinary copper wires to create a material with the property physicists call "negative electric permittivity." Electric permittivity-often referred to as the "dielectric constant"-is the response of a material to electromagnetic radiation.

"When you take a material like plastic, glass or sapphire and you shine microwaves onto it, you can characterize how the microwaves going through it will behave by a parameter called electric permittivity," explained Schultz. Most known materials in nature have a positive electric permittivity.

Pendry also recently suggested a way of using copper rings to make a material with negative magnetic permeability at microwave frequencies. Just about all of the magnetic materials in nature, those that respond to magnetic rather than electric fields, have what physicists call a "positive magnetic permeability."

What's unusual about the new class of materials produced by the UCSD team is that it simultaneously has a negative electric permittivity and a negative magnetic permeability, a combination of properties never before seen in a natural or man-made material.

"And the interesting thing is that it's produced with no magnetic material," said Schultz. "It's all done with copper."

"The bottom line," said Smith, "is that this material-this metamaterial, at frequencies where both the permittivity and permeability are negative, behaves according to a left-handed rule, rather than a right-handed rule."


Story Source:

The above story is based on materials provided by University Of California, San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Diego. "UCSD Physicists Develop New Class Of Composite Materials With "Reversed" Physical Properties Never Before Seen." ScienceDaily. ScienceDaily, 22 March 2000. <www.sciencedaily.com/releases/2000/03/000322091426.htm>.
University Of California, San Diego. (2000, March 22). UCSD Physicists Develop New Class Of Composite Materials With "Reversed" Physical Properties Never Before Seen. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2000/03/000322091426.htm
University Of California, San Diego. "UCSD Physicists Develop New Class Of Composite Materials With "Reversed" Physical Properties Never Before Seen." ScienceDaily. www.sciencedaily.com/releases/2000/03/000322091426.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins