Featured Research

from universities, journals, and other organizations

Microelectromechanical Technology -- Meshless Numerical Methods Simplify Device Design And Analysis

Date:
August 18, 2000
Source:
University Of Illinois At Urbana-Champaign
Summary:
University of Illinois engineers have designed numerical techniques that can help analyze MEMS devices and assist in the development of better computer simulation systems.

CHAMPAIGN, Ill. -- University of Illinois engineers have designed numerical techniques that can help analyze MEMS devices and assist in the development of better computer simulation systems.

New techniques are needed because makers of microelectromechanical systems (MEMS) need efficient and robust simulation tools to investigate design alternatives. Since most MEMS devices are geometrically complicated and electromechanically coupled, the development of such simulation tools is no small task.

"Typical computer-aided design systems require the generation of an elaborate mesh to perform computational analysis," said Narayana Aluru, a UI professor of general engineering and a researcher in the university's Beckman Institute for Advanced Science and Technology. "The mesh consists of many thousands of small, interconnected elements, upon which the specific equations are solved."

But generating such a mesh for a complicated, three-dimensional microdevice with mixed energy domains -- including mechanical, electrical, optical, magnetic and thermal -- can be too time consuming and computationally expensive for practical use, Aluru said. "To develop fast and reliable CAD systems for MEMS, advances are needed that minimize the time spent on mesh generation."

Aluru and graduate student Gang Li have developed meshless numerical methods that provide simple and fast alternatives to traditional mesh-based techniques. Instead of generating a complicated, interconnected mesh, the researchers perform computational analysis on points randomly sprinkled across the domain of the microdevice. Connectivity information among the scattered points is not required.

"Because the points don't need to talk to one another, the cost and complexity of mesh generation is eliminated," Aluru said. "This greatly simplifies the making of efficient CAD tools for MEMS use."

Meshless methods also avoid the difficulties of mesh distortion in problems involving large surface deformations, and make it much easier to interface two or more energy domains.

"For example, to analyze a MEMS device that has coupled elastic- and electrostatic-energy domains, we need to generate both a volume mesh for the elastic analysis and a surface mesh for the electrostatic analysis," Aluru said. "With traditional techniques, these two meshes must be compatible or we can't interpolate solutions from one to the other."

When a microfluidic energy domain is also encountered -- such as in the design of MEMS-based accelerometers -- three different meshes are required, with corresponding complications, Aluru said. "Meshless methods can easily interpolate not only between random points in a domain, but between different domains as well, significantly reducing both time and expense."

Aluru and Li will present their latest meshless simulation techniques at the International Congress of Theoretical and Applied Mechanics, to be held Aug. 27-Sept. 2 in Chicago.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Microelectromechanical Technology -- Meshless Numerical Methods Simplify Device Design And Analysis." ScienceDaily. ScienceDaily, 18 August 2000. <www.sciencedaily.com/releases/2000/08/000811065235.htm>.
University Of Illinois At Urbana-Champaign. (2000, August 18). Microelectromechanical Technology -- Meshless Numerical Methods Simplify Device Design And Analysis. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2000/08/000811065235.htm
University Of Illinois At Urbana-Champaign. "Microelectromechanical Technology -- Meshless Numerical Methods Simplify Device Design And Analysis." ScienceDaily. www.sciencedaily.com/releases/2000/08/000811065235.htm (accessed July 29, 2014).

Share This




More Computers & Math News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Teen's Phone Ignites Under Her Pillow; How Real Is The Risk?

Teen's Phone Ignites Under Her Pillow; How Real Is The Risk?

Newsy (July 28, 2014) A Texas teen's Samsung phone apparently ignited while she slept, but what was the real problem here? Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
Cellphone Unlocking Bill Clears U.S. House, Heads to Obama

Cellphone Unlocking Bill Clears U.S. House, Heads to Obama

Reuters - US Online Video (July 27, 2014) Congress gets rid of pesky law that made it illegal to "unlock" mobile phones without permission, giving consumers the option to use the same phone on a competitor's wireless network. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Congress OKs Unlocking Phones From Carriers

Congress OKs Unlocking Phones From Carriers

Newsy (July 26, 2014) A bill legalizing "unlocking," or untethering a phone from its default wireless carrier, has passed Congress and is expected to be signed into law. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins