Featured Research

from universities, journals, and other organizations

Scientists Develop Polymers With Nitric-Oxide Releasing Particles For Use In Biomedical Devices

Date:
August 21, 2000
Source:
University Of Michigan
Summary:
University of Michigan analytical chemists have developed polymers containing tiny silica particles that release low levels of nitric oxide gas. The U-M polymers are designed to mimic human endothelial cells, which produce nitric oxide to relax blood vessels and inhibit blood coagulation.

University of Michigan analytical chemists have developed polymers containing tiny silica particles that release low levels of nitric oxide gas. The U-M polymers are designed to mimic human endothelial cells, which produce nitric oxide to relax blood vessels and inhibit blood coagulation.

"Our goal is to reproduce the body's natural nitric oxide production system, which prevents clots from forming inside blood vessels," said Mark E. Meyerhoff, U-M professor of chemistry.

At the American Chemical Society meeting held here this week, Huiping Zhang, U-M graduate student, presented results of recent studies showing that fumed silica particles incorporated into polyurethane and silicone rubber films can generate levels of nitric oxide comparable to endothelial cells for up to 24 hours.

According to Meyerhoff, polymers that release nitric oxide could help prevent the formation of blood clots on biomedical devices---such as tubing, equipment or plastic bags which come in direct contact with blood during heart by-pass surgery, kidney dialysis or extracorporeal membrane oxygenation (ECMO).

Meyerhoff also hopes to use NO-releasing polymers to coat implantable blood sensors, currently under development at U-M, which could continuously monitor vital electrolytes and blood gases in critically ill patients.

"Ten-nanometer fumed silica particles are chemically derivatized to contain surface diazeniumdiolate functional groups, which release nitric oxide slowly over long periods of time when exposed to water," Zhang explained.

"Our initial studies used nitric oxide release chemistry which contaminated the blood with diamine precursors," Zhang added. To avoid this problem, he has developed and is now testing new silicone rubber and polyurethane materials in which the diazeniumdiolates are covalently linked to the fumed silica filler particles, so leaching cannot occur.

Fabricating polymers with NO-releasing fumed silica particles is not difficult and the materials are inexpensive and readily available, according to Zhang. Additional laboratory and animal tests are currently under way to evaluate the blood compatibility of the NO-generating polymers.

U-M research to develop NO- releasing polymers is funded by the National Institutes of Health and Michigan Critical Care Consultants, Inc. of Ann Arbor, Mich. Kelly A. Mowery and Jeffrey K. Politis, former U-M graduate students, and Melissa Batchelor and Bong Oh, current U-M graduate students, also participated in the research project.


Story Source:

The above story is based on materials provided by University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan. "Scientists Develop Polymers With Nitric-Oxide Releasing Particles For Use In Biomedical Devices." ScienceDaily. ScienceDaily, 21 August 2000. <www.sciencedaily.com/releases/2000/08/000818111053.htm>.
University Of Michigan. (2000, August 21). Scientists Develop Polymers With Nitric-Oxide Releasing Particles For Use In Biomedical Devices. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2000/08/000818111053.htm
University Of Michigan. "Scientists Develop Polymers With Nitric-Oxide Releasing Particles For Use In Biomedical Devices." ScienceDaily. www.sciencedaily.com/releases/2000/08/000818111053.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins