Featured Research

from universities, journals, and other organizations

High-Resolution Acoustic System Detects Objects Buried In Soil

Date:
October 3, 2000
Source:
University Of Illinois Urbana-Champaign
Summary:
Archaeologists soon may be using sound waves to survey potential building sites for significant cultural artifacts, say researchers at the University of Illinois. They recently demonstrated a high-resolution acoustic system capable of detecting and imaging small buried objects.

CHAMPAIGN, Ill. -- Archaeologists soon may be using sound waves to survey potential building sites for significant cultural artifacts, say researchers at the University of Illinois. They recently demonstrated a high-resolution acoustic system capable of detecting and imaging small buried objects.

"There are thousands of potential building sites in the United States that must be carefully assessed before construction can begin," said William O'Brien Jr., a UI professor of electrical and computer engineering and the director of the Bioacoustics Research Laboratory at the university's Beckman Institute for Advanced Science and Technology. "What's needed is a quick and easy technique to identify those sites that contain important cultural or archaeological artifacts."

Current "dig and sift" methods are too time-consuming, expensive and imprecise, O'Brien said. Ground-penetrating radars don't work well in wet soils or for non-metallic objects, such as arrowheads, pottery shards or human remains. And technologies used in seismic exploration lack the resolution needed to identify small artifacts. The use of sound waves seemed like a good alternative.

To perform a feasibility study, O'Brien and his colleagues -- professors David Munson and Robert Darmody, and graduate students Catherine Frazier and Nail Cadalli -- used a single-element transmitter to send pulses of sound into the ground at a frequency of 6 kilohertz. For their receiver, the researchers used a 52-element acoustic array from the head of a torpedo. They also developed special image-reconstruction software to convert the sound waves reflected from buried objects into pictures.

"In principle, our technique is similar to those used in seismic exploration, where an explosive charge is detonated and the reflected sound waves are picked up by an array of receivers," O'Brien said. "Because we use a much higher frequency, however, our resolution is much greater."

Currently, the device can penetrate about a foot underground and resolve objects that are 2 inches in diameter. Future improvements are aimed at increasing both penetration depth and resolution. One goal is to build a better transduction device that would send more sound into the ground.

"The torpedo head was designed to propagate sound into water, not into soil," O'Brien said. "We are developing a transduction device that is much better matched to the impedance of soil."

The researchers are also experimenting with a transmitter array that could provide focusing of the transmit beam. "With a focused source, we could transmit more energy into the region of interest," O'Brien said. "That would allow us to penetrate farther and obtain better image quality."

With additional modifications, the system also could be used to detect land mines, O'Brien said.

The researchers described the acoustical imaging system in the July issue of the Journal of the Acoustical Society of America. The work was supported by the U.S. Army Construction Engineering Research Laboratory.


Story Source:

The above story is based on materials provided by University Of Illinois Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois Urbana-Champaign. "High-Resolution Acoustic System Detects Objects Buried In Soil." ScienceDaily. ScienceDaily, 3 October 2000. <www.sciencedaily.com/releases/2000/10/001003072717.htm>.
University Of Illinois Urbana-Champaign. (2000, October 3). High-Resolution Acoustic System Detects Objects Buried In Soil. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2000/10/001003072717.htm
University Of Illinois Urbana-Champaign. "High-Resolution Acoustic System Detects Objects Buried In Soil." ScienceDaily. www.sciencedaily.com/releases/2000/10/001003072717.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins