Featured Research

from universities, journals, and other organizations

Brookhaven Lab Researchers Develop A Technique To Measure Defects In Materials With Unprecedented Accuracy

Date:
December 7, 2000
Source:
Brookhaven National Laboratory
Summary:
Researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have developed a technique to detect defects in materials with picometer accuracy. This is the highest accuracy ever achieved in such measurements, akin to finding a speck of dust in an area as big as the United States. A picometer is a trillionth of a meter.

UPTON, NY — Researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have developed a technique to detect defects in materials with picometer accuracy. This is the highest accuracy ever achieved in such measurements, akin to finding a speck of dust in an area as big as the United States. A picometer is a trillionth of a meter. The research is reported in today’s issue of the journal Physical Review Letters.

Related Articles


Yimei Zhu, a materials physicist from Brookhaven who was the lead researcher in this project, said, "Defects are tiny deviations from the normal positions of atoms in materials, and they often control a material’s function. For example, certain defects allow a larger current to be transported without resistance in superconductors, or improve the electronic, magnetic and optical properties of semiconductors used in computers or digital equipment. This new technique enables researchers to measure defects with unprecedented accuracy, which is important for designing advanced materials."

The researchers developed the new technique, which they named interferometry in coherent electron diffraction, using a one-of-a-kind transmission electron microscope. The technique is complementary to neutron-scattering techniques, which require reactors or accelerators; and x-ray scattering techniques, which require a synchrotron. Because of its small probe size and high spatial resolution, electron microscopy is particularly suited for the investigation of an extremely tiny area of a material, making it indispensable for research in nanometer-scale science and technology. In this new form of interferometry developed at Brookhaven, electrons from a coherent source of light hit a sample from different directions and form particular "interference" patterns, which can be viewed by a detector. This information is then interpreted by scientists to measure defects in materials.

Brookhaven researchers’ expertise in materials science coupled with a transmission electron microscope made the new technique possible. Built by JEOL of Tokyo according to Brookhaven researchers’ specifications, the microscope on which the research was performed can magnify samples up to 50 million times. At this magnification, an atom looks as big as a ping pong ball, and a ping pong ball would look as big as the earth. One of the best instruments of its kind in the world, the microscope is tailored for research in solid-state physics, chemistry and biology, as well as materials science.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Brookhaven Lab Researchers Develop A Technique To Measure Defects In Materials With Unprecedented Accuracy." ScienceDaily. ScienceDaily, 7 December 2000. <www.sciencedaily.com/releases/2000/11/001122180249.htm>.
Brookhaven National Laboratory. (2000, December 7). Brookhaven Lab Researchers Develop A Technique To Measure Defects In Materials With Unprecedented Accuracy. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2000/11/001122180249.htm
Brookhaven National Laboratory. "Brookhaven Lab Researchers Develop A Technique To Measure Defects In Materials With Unprecedented Accuracy." ScienceDaily. www.sciencedaily.com/releases/2000/11/001122180249.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins