Featured Research

from universities, journals, and other organizations

Brookhaven Lab Researchers Develop A Technique To Measure Defects In Materials With Unprecedented Accuracy

Date:
December 7, 2000
Source:
Brookhaven National Laboratory
Summary:
Researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have developed a technique to detect defects in materials with picometer accuracy. This is the highest accuracy ever achieved in such measurements, akin to finding a speck of dust in an area as big as the United States. A picometer is a trillionth of a meter.

UPTON, NY — Researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have developed a technique to detect defects in materials with picometer accuracy. This is the highest accuracy ever achieved in such measurements, akin to finding a speck of dust in an area as big as the United States. A picometer is a trillionth of a meter. The research is reported in today’s issue of the journal Physical Review Letters.

Yimei Zhu, a materials physicist from Brookhaven who was the lead researcher in this project, said, "Defects are tiny deviations from the normal positions of atoms in materials, and they often control a material’s function. For example, certain defects allow a larger current to be transported without resistance in superconductors, or improve the electronic, magnetic and optical properties of semiconductors used in computers or digital equipment. This new technique enables researchers to measure defects with unprecedented accuracy, which is important for designing advanced materials."

The researchers developed the new technique, which they named interferometry in coherent electron diffraction, using a one-of-a-kind transmission electron microscope. The technique is complementary to neutron-scattering techniques, which require reactors or accelerators; and x-ray scattering techniques, which require a synchrotron. Because of its small probe size and high spatial resolution, electron microscopy is particularly suited for the investigation of an extremely tiny area of a material, making it indispensable for research in nanometer-scale science and technology. In this new form of interferometry developed at Brookhaven, electrons from a coherent source of light hit a sample from different directions and form particular "interference" patterns, which can be viewed by a detector. This information is then interpreted by scientists to measure defects in materials.

Brookhaven researchers’ expertise in materials science coupled with a transmission electron microscope made the new technique possible. Built by JEOL of Tokyo according to Brookhaven researchers’ specifications, the microscope on which the research was performed can magnify samples up to 50 million times. At this magnification, an atom looks as big as a ping pong ball, and a ping pong ball would look as big as the earth. One of the best instruments of its kind in the world, the microscope is tailored for research in solid-state physics, chemistry and biology, as well as materials science.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Brookhaven Lab Researchers Develop A Technique To Measure Defects In Materials With Unprecedented Accuracy." ScienceDaily. ScienceDaily, 7 December 2000. <www.sciencedaily.com/releases/2000/11/001122180249.htm>.
Brookhaven National Laboratory. (2000, December 7). Brookhaven Lab Researchers Develop A Technique To Measure Defects In Materials With Unprecedented Accuracy. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2000/11/001122180249.htm
Brookhaven National Laboratory. "Brookhaven Lab Researchers Develop A Technique To Measure Defects In Materials With Unprecedented Accuracy." ScienceDaily. www.sciencedaily.com/releases/2000/11/001122180249.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins