Featured Research

from universities, journals, and other organizations

Fiber-Optic Sensors Detect Damaged Rails And Faulty Wheels

Date:
February 7, 2001
Source:
University Of Illinois At Urbana-Champaign
Summary:
Broken rails or damaged wheels can cause train accidents with potential loss of life, injury or property damage. Researchers at the University of Illinois are fabricating fiber-optic sensors that can improve train safety by detecting flaws in rails and wheels.

Champaign, IL -- Broken rails or damaged wheels can cause train accidents with potential loss of life, injury or property damage. Researchers at the University of Illinois are fabricating fiber-optic sensors that can improve train safety by detecting flaws in rails and wheels. “Our sensors are based upon optical signal transmission through sensitive optical fibers that are firmly attached to the rails with epoxy and tape,” said Shun-Lien Chuang, a UI professor of electrical and computer engineering. “We use fiber optics to sense an environmental change – such as the weight of a passing train or the strain created by a cracked, broken or buckled rail.”

Related Articles


In projects sponsored by the Association of American Railroads and the Transportation Research Board at the National Academy of Science, Chuang and his research assistants are developing different sensor designs for specific applications. The research on these sensors will help protect both freight and passenger trains from derailment, no matter what speed they are traveling.

In one sensor design, the weight of a passing train causes strain in the rail, which is transferred to the attached fiber. The intensity of light that is transmitted through the fiber will depend upon the condition of the rail and the amount of induced strain. In addition to detecting damaged rails, this sensor also can be used for detecting a train’s position and speed.

“The device uses an optical time domain reflectometry system, which measures the signal loss in the optical fiber as a function of distance using a time-gated pulse detection technique,” Chuang said. “A moving train creates perturbations in the fiber’s optical transmission, so the system takes several scans and measures the distance to the perturbations in order to pinpoint the train’s location and speed.”

Another sensor design is based on the “micro-bending” effect. “Fiber optics operate on total internal reflection – so when the fiber is bent, some of the light leaks out,” Chuang said. “We can calibrate the intensity of the optical transmission as a function of the applied bending pressure.” By introducing a certain amount of micro bending into the fiber, the researchers can measure any additional pressure, including the weight of passing rail cars. The palm-sized sensor also offers a fast and cost-effective method to detect deformities – particularly flat spots – in rail-car wheels. “Wheels can develop flat spots in service, which can damage the rail due to the severe dynamic loads they cause,” Chuang said. “By measuring the impact force between wheel and rail as a train passes over the sensor, defective wheels can be readily identified.”

The telecommunications market has driven down the cost of optical fibers and lasers, making the fiber-optic sensors less expensive than conventional track circuitry or strain gauges, Chuang said. “Our sensors also can operate 24 hours a day unattended and are immune to electromagnetic interference.” The sensors were field-tested locally in cooperation with the Canadian National Illinois Central Railroad. They are currently being tested at the AAR’s Transportation Technology Center in Pueblo, Colo.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Fiber-Optic Sensors Detect Damaged Rails And Faulty Wheels." ScienceDaily. ScienceDaily, 7 February 2001. <www.sciencedaily.com/releases/2001/02/010205075953.htm>.
University Of Illinois At Urbana-Champaign. (2001, February 7). Fiber-Optic Sensors Detect Damaged Rails And Faulty Wheels. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2001/02/010205075953.htm
University Of Illinois At Urbana-Champaign. "Fiber-Optic Sensors Detect Damaged Rails And Faulty Wheels." ScienceDaily. www.sciencedaily.com/releases/2001/02/010205075953.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
US Army Completes Ebola Treatment Unit

US Army Completes Ebola Treatment Unit

Reuters - US Online Video (Nov. 22, 2014) The US Army of engineers completes Ebola treatment center in Liberia. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins