Featured Research

from universities, journals, and other organizations

Scientists Investigate "Nanowires" With Very Low Resistance; Work Could Lead To Smaller, Faster Electronic Circuits

Date:
February 27, 2001
Source:
Brookhaven National Laboratory
Summary:
In the world of electronic circuits, smaller is better: Small circuits, such as those used in computers, run faster and process more data. One key to developing smaller circuits is making tiny wires. Scientists at the U.S. Department of Energy's Brookhaven National Laboratory and Stanford University think they've developed a good candidate, molecular wires millions of times smaller in diameter than a human hair.

Upton, NY -- In the world of electronic circuits, smaller is better: Small circuits, such as those used in computers, run faster and process more data. One key to developing smaller circuits is making tiny wires.

Related Articles


Scientists at the U.S. Department of Energy's Brookhaven National Laboratory and Stanford University think they've developed a good candidate, molecular wires millions of times smaller in diameter than a human hair. Described in a paper appearing in the February 23, 2001 issue of the journal Science, these "nanowires," so called because they have dimensions on the order of a nanometer (a billionth of a meter), have high rates of electron transfer with very low resistance. "That means less impedance to the flow of current, with little or no loss of energy," says chemist John Smalley, the lead Brookhaven researcher on the study.

In their search for tiny wires, Smalley and his colleagues were interested in an organic molecule called oligophenylenevinylene (OPV), synthesized at Stanford. "These molecules are essentially 'chains' of repeating links made up of carbon and hydrogen atoms arranged to promote strong, long-range electronic interactions through these molecules," Smalley says.

To learn if these molecules would make good wires, the scientists used the chain-like molecules to connect a gold electrode and ferrocene, a substance capable of accepting and giving off electrons. Then, using a technique developed at Brookhaven, they measured the rate of electron transfer through the chain.

The technique uses a laser to heat up the gold electrode and change its electrical potential. A very sensitive voltmeter then measures the change in electrical potential over time as electrons move back and forth across the connection formed by the molecular wires. The faster the change, the faster the rate of electron transfer, and the lower the resistance in the wire.

The scientists found a very high rate of electron transfer. "We think the electrons are actually popping across through a process called electron tunneling in less than 20 picoseconds (trillionths of a second)," Smalley says. "That means OPV should make pretty good low-resistance molecular wires."

Furthermore, while the scientists expected the rate of electron transfer to decrease as more links were added to the molecular wire chain, making it longer, this didn't happen. The rate remained fast, and the resistance low, up to lengths of nearly three nanometers -- relatively long on a nanometer scale. "That means wiring circuits will be easier because you don’t have to worry so much about the distances," Smalley says.

Smalley points out that the wires aren't perfect, however. The resistance is not as low as it should be according to certain theoretical expectations. "Something else seems to be increasing the resistance," he says. But this drawback could even turn into a benefit if the scientists can figure out what that factor is and how to control it. That might enable them to make electronic components such as tiny transistors and diodes, which work on the basis of varying the electrical resistance.

This research was funded by the U.S. Department of Energy, the National Science Foundation, the National Institute of General Medical Science, and the Stanford University Office of Technology Licensing.

The U.S. Department of Energy's Brookhaven National Laboratory creates and operates major facilities available to university, industrial and government personnel for basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is operated by Brookhaven Science Associates, a not-for-profit research management company, under contract with the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Scientists Investigate "Nanowires" With Very Low Resistance; Work Could Lead To Smaller, Faster Electronic Circuits." ScienceDaily. ScienceDaily, 27 February 2001. <www.sciencedaily.com/releases/2001/02/010223080307.htm>.
Brookhaven National Laboratory. (2001, February 27). Scientists Investigate "Nanowires" With Very Low Resistance; Work Could Lead To Smaller, Faster Electronic Circuits. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2001/02/010223080307.htm
Brookhaven National Laboratory. "Scientists Investigate "Nanowires" With Very Low Resistance; Work Could Lead To Smaller, Faster Electronic Circuits." ScienceDaily. www.sciencedaily.com/releases/2001/02/010223080307.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Two Stunt Pilots Perform Incredibly Close Flyby

Two Stunt Pilots Perform Incredibly Close Flyby

Rumble (Jan. 29, 2015) — Two pilots from &apos;Escuadrilla Argentina de Acrobacia Aιrea&apos; perform an incredibly low altitude flyby stunt during a recent show exhibition in Argentina. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins