Featured Research

from universities, journals, and other organizations

IMAGE Satellite Snaps First Pictures From Space Of Earth's Double Aurora

Date:
March 20, 2001
Source:
University Of California, Berkeley
Summary:
Among the first pictures captured by the Magnetopause-to-Aurora Global Exploration, or IMAGE, satellite, launched a year ago to study the Earth's magnetic shield, is the first global view of the double aurora - the pretty curlicues and shimmering curtains of the electron aurora and the more diffuse proton aurora.

Berkeley - Among the first pictures captured by the Magnetopause-to-Aurora Global Exploration, or IMAGE, satellite, launched a year ago to study the Earth's magnetic shield, is the first global view of the double aurora - the pretty curlicues and shimmering curtains of the electron aurora and the more diffuse proton aurora.

The colored light display most people associate with the aurora or Northern Lights is produced by electrons crashing into the atmosphere as they descend along the Earth's magnetic field lines. Almost equally bright but less structured are the lights produced by positively charged protons - hydrogen nuclei - as they ram the atmosphere.

Though scientists have been able to distinguish the electron and proton auroras from the ground since the 1950s, IMAGE's far-ultraviolet imager, built by a team at the University of California, Berkeley's Space Sciences Laboratory, has obtained the first pictures from space showing the entire proton aurora and its relationship to the electron aurora.

The hour-long series of photos, taken every two minutes, suggest that the proton aurora appears first and may initiate the more spectacular electron aurora.

"These pictures show for the first time that the electron and proton auroras are different and develop differently over time," said Stephen B. Mende, an atmospheric physicist and lead investigator of the far-ultraviolet instrument team. "We've looked at the proton light for some time from the ground, but never seen the proton aurora from a global perspective like this. That is very exciting."

The findings will be published along with nine other papers on IMAGE results in the March 15 issue of Geophysical Research Letters, a publication of the American Geophysical Union. Some earlier results from IMAGE were reported in the Jan. 26, 2001, issue of Science.

The far-ultraviolet imaging team includes research physicists Harald U. Frey and Michael Lampton of UC Berkeley's Space Sciences Laboratory; J.-C. Gerard and B. Hubert of the University of Liege, Belgium; S. Fuselier of Lockheed-Martin Palo Alto Research Laboratories, Calif.; J. Spann of NASA Marshall Spaceflight Center; and R. Gladstone and J. L. Burch of the Southwest Research Institute (SWRI) in San Antonio, Texas.

Captured last June 28, the auroras were the result of a rather puny substorm in the Earth's magnetosphere, the magnetic field region that enshrouds the Earth and protects it from the Sun's periodic particle storms, Mende said. Nevertheless, IMAGE's far-ultraviolet instrument was able to capture the first images of the two distinct auroras, like lopsided halos around the North Pole and slightly offset from one another.

The images show, Frey said, that the diffuse aurora at lower polar latitudes come from both protons and electrons, while the very pretty, structured aurora at higher latitudes near the North Pole is due almost entirely to the electrons.

Substorms are generated when the Earth's magnetosphere for some reason gets charged up with protons and electrons and then discharges, sending ionized particles spiraling along magnetic field lines to where they converge at the pole. Along the way, they hit atoms in the atmosphere and emit light, ranging from colorful visible light to the invisible far-ultraviolet.

Substorms, which may last an hour, are distinct from the day-long storms, which are generated by coronal mass ejections and large flares on the sun, that disrupt global communications.

What makes the two types of auroras distinct are the different behaviors of protons and electrons as they enter the atmosphere. Protons quickly become neutralized as they combine with electrons, and once this happens they ignore magnetic field lines and fly in all directions. Electrons, however, remain free and stick to magnetic field lines.

"Electrons spiral tightly around the magnetic field lines, so even after making many collisions, at the end they're not far from the original field line they were attached to," Mende said. As a result, the light from their collisions with atmospheric atoms has a structure dictated by the field lines, typically shimmering curtains of light.

In the June 28 substorm, the proton aurora started at a lower polar latitude than the electron aurora but gradually moved northward to sit atop the electron aurora - two concentric ovals some 2,000 miles in diameter - until it was outshone by the electron aurora. As the electron aurora continued to expand toward the pole, the proton aurora remained behind.

"The proton aurora is actually very important at the start of the substorm, but the electron aurora takes over, at least as far as brightness is concerned," Mende said. "By studying the two separately we are beginning to understand the dynamics of the Northern Lights."

IMAGE was launched March 25, 2000, carrying five suites of camera systems, among them the far-ultraviolet imager built by Mende's team. The instrument observes the aurora in three far-ultraviolet wavelengths: at very short wavelengths, where mainly hydrogen emissions are seen; at longer wavelengths, where oxygen atoms are visible; and at even longer wavelengths, where nitrogen emits.

As IMAGE swings over the North Pole, it is far enough above the Earth - about seven Earth radii - to be visible from Berkeley. As a result, an antenna built for the HESSI (High Energy Solar Spectroscopic Imager) mission, scheduled for launch in the next couple of months, has been able to download data from the FUV imager directly to the scientific team at UC Berkeley.

This has allowed the team to put on the Web every two minutes a new far-ultraviolet picture of the aurora. Assessment of individual storms and substorms, however, takes months of computer analysis.

The research was sponsored by the National Aeronautics and Space Administration through SWRI.

Related Links:

* Current images of the electron aurora -- http://sprg.ssl.berkeley.edu/image/latest_wic.html

* Mpeg video of a proton aurora -- http://sprg.ssl.berkeley.edu/sprite/ago96/image/mpegs/si12_2000_197_mapped.mpg

* Mpeg video of an electron aurora -- http://sprg.ssl.berkeley.edu/sprite/ago96/image/mpegs/wic_2000_197_mapped.mpg


Story Source:

The above story is based on materials provided by University Of California, Berkeley. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, Berkeley. "IMAGE Satellite Snaps First Pictures From Space Of Earth's Double Aurora." ScienceDaily. ScienceDaily, 20 March 2001. <www.sciencedaily.com/releases/2001/03/010316071959.htm>.
University Of California, Berkeley. (2001, March 20). IMAGE Satellite Snaps First Pictures From Space Of Earth's Double Aurora. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2001/03/010316071959.htm
University Of California, Berkeley. "IMAGE Satellite Snaps First Pictures From Space Of Earth's Double Aurora." ScienceDaily. www.sciencedaily.com/releases/2001/03/010316071959.htm (accessed August 21, 2014).

Share This




More Space & Time News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com
Space Shuttle Replica Hoisted for Landmark Exhibit

Space Shuttle Replica Hoisted for Landmark Exhibit

Reuters - US Online Video (Aug. 14, 2014) The space shuttle replica Independence has been hoisted atop Space Center Houston's shuttle carrier aircraft, creating a monument to the shuttle program which will open to the public next year. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins