Featured Research

from universities, journals, and other organizations

Swept Away: Study Suggests Massive Water Erosion Of Mars Highlands

Date:
May 22, 2001
Source:
Washington University In St. Louis
Summary:
Massive erosion shaped the surface of Mars, according to planetary scientists at Washington University in St. Louis. The researchers used high-resolution topographic data from the Mars Orbiter Laser Altimeter (MOLA) instrument on the Mars Global Surveyor mission to construct detailed maps of the planet's surface.

Massive erosion shaped the surface of Mars, according to planetary scientists at Washington University in St. Louis.

Brian M. Hynek, doctoral candidate in Earth and Planetary Sciences, and Roger J. Phillips, Ph.D., professor of earth and planetary sciences and director of Washington University’s McDonnell Center for the Space Sciences, suggest that western Arabia Terra, an area the size of the European continent, experienced an extensive erosion event caused by flowing water.

"We argue that this entire region has been massively eroded," said Hynek. "The region used to look like the rest of the highlands, but a vertical kilometer of material - enough to fill the Gulf of Mexico - has been relocated downslope and spread out into the northern plains."

The researchers used high-resolution topographic data from the Mars Orbiter Laser Altimeter (MOLA) instrument on the Mars Global Surveyor mission to construct detailed maps of the planet's surface. "Before this mission, topography was known only within a kilometer at best; now we are accurate to within half a meter at any given point on the surface of Mars," said Hynek. MOLA's accuracy, and the more than half a billion data points it has collected, reveals many previously unknown features of Mars' surface. The research was published in the May issue of the journal Geology.

Mars is divided into two main areas: the older Southern Highlands with lots of craters and valley networks, and the younger Northern Lowlands with few craters and no valley networks.

When the researchers began studying maps from the new data, they noticed that one region, western Arabia Terra, is a kilometer lower than the rest of the highlands and borders the lowlands to the north. Before the Mars Global Surveyor mission, this region was lumped in with the rest of the highlands. But the new topography reveals that there is much more going on here than previously thought. Looking carefully at western Arabia, they noticed that it differs from the rest of the highlands in having very few large craters, and only a few traces of valley networks, and numerous erosional remnants.

"This combination makes it very likely that the entire region was swept away," said Hynek. But how can you remove all this material and carry it away?

"Lots of things can erode planets. Wind is very effective on long timescales; volcanoes, ice and glaciers can all erode features, but on this large of a scale these are unlikely explanations," said Hynek. He said that the massive size of the eroded area and the remnants of valley networks suggest running water was responsible.

The researchers believe the erosion event took place very early in Mars' history, during the Late Noachian, and ended by around 3.8 to 3.5 billion years ago. The timing coincides with other water features found on the planet and heavy outflow of lava from volcanoes early in Mars' history, as the researchers noted in the journal Science earlier this year. Volcanic eruptions emit great amounts of water, carbon dioxide, sulfur and other greenhouse gases as well as lava and ash. This could have led to the development of an atmosphere on Mars that persisted for a few hundred million years - long enough to raise surface temperature above freezing and maintain liquid water on the planet's surface.

"Mars has not always been cold and dry with little happening on the surface. At one time it had a heyday," said Hynek.

The researchers are now focusing attention on a large outcrop of hematite occurring within western Arabia Terra, the Terra Meridiani region. Hematite, an iron oxide, forms in the presence of water on Earth.

"This is very likely to be one of two Mars Rover landing sites in 2004," said Hynek. "We want to go where the water was."


Story Source:

The above story is based on materials provided by Washington University In St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University In St. Louis. "Swept Away: Study Suggests Massive Water Erosion Of Mars Highlands." ScienceDaily. ScienceDaily, 22 May 2001. <www.sciencedaily.com/releases/2001/05/010521071412.htm>.
Washington University In St. Louis. (2001, May 22). Swept Away: Study Suggests Massive Water Erosion Of Mars Highlands. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2001/05/010521071412.htm
Washington University In St. Louis. "Swept Away: Study Suggests Massive Water Erosion Of Mars Highlands." ScienceDaily. www.sciencedaily.com/releases/2001/05/010521071412.htm (accessed August 27, 2014).

Share This




More Space & Time News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins