Featured Research

from universities, journals, and other organizations

Rock And Ice Linked By Crushing Mechanism

Date:
August 31, 2001
Source:
Dartmouth College
Summary:
The cracking, splitting and crushing events occurring constantly just beneath the earth’s surface can now be linked to similar activity taking place in floating sheets of ice in the polar regions. Two Dartmouth researchers offer a theory about how these brittle substances break under compression.

HANOVER, N.H. – The cracking, splitting and crushing events occurring constantly just beneath the earth’s surface can now be linked to similar activity taking place in floating sheets of ice in the polar regions. Two Dartmouth researchers offer a theory about how these brittle substances break under compression.

Related Articles


Erland Schulson, the George Austin Colligan Distinguished Professor at Dartmouth’s Thayer School of Engineering, and Carl Renshaw, Associate Professor of Earth Sciences at Dartmouth, believe that most brittle materials, like rocks and ice, crumble or fail in the same manner. In an article in the August 30, 2001, issue of Nature, titled "Universal Behavior in Compressive Failure of Brittle Materials," the duo names a specific type of cracking mechanism that leads to collapse.

"The subtitle of the article could be ‘Lessons Learned from Ice.’ By looking at ice cracking, it revealed a mechanism that we haven’t applied before to rocks," said Schulson. "We showed years ago that as ice is compressed, cracks within it slide together and link up, eventually causing the ice to fail. And we know what triggers this in ice. We set out to determine if the physics of compressive failure are specific to any given material or not."

In their paper, Schulson and Renshaw argue that "comb" cracks, resembling the teeth on a comb, are the key to crushing in both ice and rock. "If comb cracks develop as a brittle material is compressed, we can predict how thatmaterial will fail," said Renshaw.

"This paper helps piece together the puzzle to determine what’s the critical factor for why things fail when they fail. How much pressure needs to build up in the case of concrete or how much pressure can you support when ice pushes against a structure like an oil or gas rig in the ocean," said Schulson.

Microcracks in ice have a certain character, and as they experience more pressure, they develop little extensions called "wing" cracks. About two years ago, Schulson noticed that in addition to the wing cracks, there were little secondary cracks forming along one side of the small microcracks, creating mini columns. He focused on these "comb" cracks as the trigger for failure in ice. Since this cracking behavior is also found in granite and other kinds of rock, Schulson tapped into Renshaw’s expertise to see if the physics would apply outside of ice.

Touting the benefits of interdisciplinary research, Renshaw said, "Lots of people are interested in how fractures fit together, not only from a failure point of view, but also from a fluid flow point of view. I’m working on how fluids and contaminants travel through this connected network underground. Hopefully, this discovery will lead to understanding the nature of the fracture network in the ground, and how that influences the flow of toxic metals, like arsenic, through groundwater systems."

Schulson and Renshaw will now work to see if their theory can be translated to incorporate the giant structures found in nature. "It’s one thing to show that the physics look the same, but another to prove it," said Schulson. "It looks like a duck, and walks like a duck, and quacks like a duck. Now we need to prove it is a duck." Rock and ice linked by crushing mechanism

HANOVER, N.H. – The cracking, splitting and crushing events occurring constantly just beneath the earth’s surface can now be linked to similar activity taking place in floating sheets of ice in the polar regions. Two Dartmouth researchers offer a theory about how these brittle substances break under compression.

Erland Schulson, the George Austin Colligan Distinguished Professor at Dartmouth’s Thayer School of Engineering, and Carl Renshaw, Associate Professor of Earth Sciences at Dartmouth, believe that most brittle materials, like rocks and ice, crumble or fail in the same manner. In an article in the August 30, 2001, issue of Nature, titled "Universal Behavior in Compressive Failure of Brittle Materials," the duo names a specific type of cracking mechanism that leads to collapse.

"The subtitle of the article could be ‘Lessons Learned from Ice.’ By looking at ice cracking, it revealed a mechanism that we haven’t applied before to rocks," said Schulson. "We showed years ago that as ice is compressed, cracks within it slide together and link up, eventually causing the ice to fail. And we know what triggers this in ice. We set out to determine if the physics of compressive failure are specific to any given material or not."

In their paper, Schulson and Renshaw argue that "comb" cracks, resembling the teeth on a comb, are the key to crushing in both ice and rock. "If comb cracks develop as a brittle material is compressed, we can predict how that material will fail," said Renshaw.

"This paper helps piece together the puzzle to determine what’s the critical factor for why things fail when they fail. How much pressure needs to build up in the case of concrete or how much pressure can you support when ice pushes against a structure like an oil or gas rig in the ocean," said Schulson.

Microcracks in ice have a certain character, and as they experience more pressure, they develop little extensions called "wing" cracks. About two years ago, Schulson noticed that in addition to the wing cracks, there were little secondary cracks forming along one side of the small microcracks, creating mini columns. He focused on these "comb" cracks as the trigger for failure in ice. Since this cracking behavior is also found in granite and other kinds of rock, Schulson tapped into Renshaw’s expertise to see if the physics would apply outside of ice.

Touting the benefits of interdisciplinary research, Renshaw said, "Lots of people are interested in how fractures fit together, not only from a failure point of view, but also from a fluid flow point of view. I’m working on how fluids and contaminants travel through this connected network underground. Hopefully, this discovery will lead to understanding the nature of the fracture network in the ground, and how that influences the flow of toxic metals, like arsenic, through groundwater systems."

Schulson and Renshaw will now work to see if their theory can be translated to incorporate the giant structures found in nature. "It’s one thing to show that the physics look the same, but another to prove it," said Schulson. "It looks like a duck, and walks like a duck, and quacks like a duck. Now we need to prove it is a duck."

Schulson’s research is funded by the Office of Naval Research and the Army Research Office. The National Science Foundation supports Renshaw’s work.


Story Source:

The above story is based on materials provided by Dartmouth College. Note: Materials may be edited for content and length.


Cite This Page:

Dartmouth College. "Rock And Ice Linked By Crushing Mechanism." ScienceDaily. ScienceDaily, 31 August 2001. <www.sciencedaily.com/releases/2001/08/010831080952.htm>.
Dartmouth College. (2001, August 31). Rock And Ice Linked By Crushing Mechanism. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2001/08/010831080952.htm
Dartmouth College. "Rock And Ice Linked By Crushing Mechanism." ScienceDaily. www.sciencedaily.com/releases/2001/08/010831080952.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins