Featured Research

from universities, journals, and other organizations

Lunar Soil Yields Evidence About Sun's Dynamic Workings

Date:
October 15, 2001
Source:
Purdue University
Summary:
Soil collected on the moon by Purdue University alumnus Eugene Cernan nearly 30 years ago has helped researchers at his alma mater and the University of California uncover new details about the workings of the sun.

WEST LAFAYETTE, Ind. — Soil collected on the moon by Purdue University alumnus Eugene Cernan nearly 30 years ago has helped researchers at his alma mater and the University of California uncover new details about the workings of the sun.

Physicists at UC Berkeley and Purdue analyzed lunar soil samples for the presence of an element deposited on the moon's surface by the solar winds, a stream of particles constantly being ejected from the sun. The analysis revealed strong evidence that materials produced in the sun's atmosphere do not circulate farther into the interior of the sun before they are ejected, as some scientists have suggested. Instead, the materials are created in the atmosphere and then ejected directly outward, spreading throughout the solar system in the solar wind.

The findings will be reported in the journal Science on Friday (10/12), in a paper written by Kuni Nishiizumi, a researcher at UC Berkeley's Space Sciences Laboratory, and Marc Caffee, an associate professor of physics at Purdue.

The lunar soil was scooped up by Apollo 17 astronauts Cernan and Harrison Schmitt, who landed on the moon in 1972. They collected the largest lunar sample ever brought back to Earth — about 249 pounds of dirt now stored at the Johnson Space Center in Houston.

"The astronauts did a spectacular job," Caffee said, noting that robots are still no substitute for humans in space when it comes to completing complex assignments.

Cernan, who was the commander of Apollo 17, was the last man to walk on the moon. He earned a bachelor of science degree in electrical engineering from Purdue in 1956 and also holds an honorary doctorate from the university.

Nishiizumi and Caffee analyzed lunar soil for the presence of a radioactive form of the element beryllium called beryllium-10. Beryllium-10 is an isotope of beryllium; it contains four protons and six neutrons in its nucleus, unlike ordinary beryllium, which contains four protons and five neutrons. This radioactive, unstable form of beryllium decomposes in 1.6 million years, a period of time called its half-life. That means any beryllium-10 found in the lunar soil must have been deposited there long after the moon's creation, and much of it has come from the solar winds, Caffee said.

Beryllium-10 is produced in the sun's atmospheric layers — the chromosphere and corona — and eventually spewed out, along with numerous other constituents, in the solar wind.

"The sun is constantly shedding pieces of itself," Caffee said.

The Earth and other planets are shielded from the solar winds by their atmospheric envelopes and magnetic fields that surround some planetary bodies.

"The moon has no atmosphere and no magnetic field, so the solar wind is not kept in any way, shape or form from hitting the surface of the moon," he said.

The researchers extracted beryllium-10 from the lunar soil by treating the soil with nitric and hydrofluoric acids. Then, the precise quantity of beryllium-10 contained in the soil was determined by using a piece of equipment called an accelerator mass spectrometer.

The findings provided strong evidence that the beryllium, and therefore other constituents produced in the sun's atmosphere, are ejected shortly after they are produced in the atmosphere. Some researchers have suggested that materials produced in the sun's atmosphere are pulled into the sun's interior, where they circulate in convection currents for millions of years before making their way back to the sun's outer atmospheric layers.

The new findings contradict that theory, Caffee said.

Such findings will not only reveal details about the sun's workings, but they also will provide new insights into how the sun and the solar system were formed 4.5 billion years ago.

"Surprisingly, there are a lot of things we still don't know about the sun," Caffee said.

He and Nishiizumi are working on a new NASA mission called Genesis, a spacecraft launched this summer that will collect particles from the solar wind.

The spacecraft is expected to complete its mission within two years and return to Earth.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Lunar Soil Yields Evidence About Sun's Dynamic Workings." ScienceDaily. ScienceDaily, 15 October 2001. <www.sciencedaily.com/releases/2001/10/011012073750.htm>.
Purdue University. (2001, October 15). Lunar Soil Yields Evidence About Sun's Dynamic Workings. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2001/10/011012073750.htm
Purdue University. "Lunar Soil Yields Evidence About Sun's Dynamic Workings." ScienceDaily. www.sciencedaily.com/releases/2001/10/011012073750.htm (accessed July 31, 2014).

Share This




More Space & Time News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Supply Ship Takes Off for International Space Station

Supply Ship Takes Off for International Space Station

AFP (July 30, 2014) The European Space Agency's fifth Automated Transfer Vehicle (ATV-5) is takes off to the International Space Station on an Ariane 5 rocket from French Guiana. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Raw: Rocket Launches Into Space With Cargo Ship

Raw: Rocket Launches Into Space With Cargo Ship

AP (July 30, 2014) Arianespace launched a rocket Tuesday from French Guiana carrying a robotic cargo ship to deliver provisions to the International Space Station. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins