Featured Research

from universities, journals, and other organizations

Pulsating "Space Hairs" Could Help Small Satellites Dock With Their Mother Ship

Date:
January 3, 2002
Source:
University Of Washington
Summary:
Beds of thousands of tiny pulsating artificial “hairs” can provide a precise method for steering small satellites to docking stations on larger vessels, according to a study led by researchers at the University of Washington.

Beds of thousands of tiny pulsating artificial “hairs” can provide a precise method for steering small satellites to docking stations on larger vessels, according to a study led by researchers at the University of Washington.

The technique is inspired by biology, patterned after the action of the small hairs, or cilia, that line the windpipe and keep it clear of mucus. It could come into wide use in future space missions as technicians begin to deploy swarms of “picosatellites” – spacecraft small enough to fit in the palm of one’s hand – to do maintenance, repair and observation work for larger satellites or space stations, according to Karl Böhringer, assistant professor of electrical engineering and leader of the effort to adapt the technology for use in space.

“Such small satellites will have to dock frequently and quickly for refueling or to download data,” Böhringer said. “This appears to be a very quick, efficient way to accomplish that. In addition, the space cilia are lightweight and relatively low cost.”

The research is featured in the latest issue of the journal Smart Materials and Structures.

The microcilia were originally developed by Gregory Kovacs and John Suh at Stanford University with funding from the Defense Advanced Research Projects Agency. Suh currently works for Xerox Corp. in California. Böhringer and his team’s research involves adapting the cilia for use in space.

In creating the devices, Suh deposited layers of a polymer on a flat silicon plate and then, using micromachining processes, carved out units, or cells, containing four cilia each. The cilia are just 0.5 millimeters (two hundreths of an inch) tall, and each cell resembles a diminutive four-leaf clover.

Each cilium contains a titanium-tungsten heating element. When at rest, the cilia curve up and away from the silicon plate, but when current is applied to the heating element the cilia are forced to flatten. By turning cilia facing the same direction on and off in sequence, Böhringer can prompt them to act like thousands of tiny fingers that move in pulsating waves to nudge objects in any of eight directions.

Böhringer, UW graduate student Mason Terry and recent graduate Joel Reiter tested the cilia’s potential using an air table to simulate the weak gravity of space and a small aluminum block as a picosatellite (a satellite weighing less than a kilogram, or a little more than two pounds). In experiments, the cilia arrays were able to easily and precisely maneuver the block. Böhringer calculates that a patch of cilia 50 centimeters (20 inches) across would be adequate to steer a 40-kilogram satellite.

The one downside, he said, was that the process used more electricity than he would have liked. However, he is confident that can be addressed with some design changes.

“We’ve shown that this is workable, which is the important thing,” he said. “Now we’ll just have to wait to see if this is the direction agencies like NASA and the Air Force want to go.”

Funding for the project was provided by the Air Force and the Universities Space Research Association.


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "Pulsating "Space Hairs" Could Help Small Satellites Dock With Their Mother Ship." ScienceDaily. ScienceDaily, 3 January 2002. <www.sciencedaily.com/releases/2002/01/020103083618.htm>.
University Of Washington. (2002, January 3). Pulsating "Space Hairs" Could Help Small Satellites Dock With Their Mother Ship. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2002/01/020103083618.htm
University Of Washington. "Pulsating "Space Hairs" Could Help Small Satellites Dock With Their Mother Ship." ScienceDaily. www.sciencedaily.com/releases/2002/01/020103083618.htm (accessed August 23, 2014).

Share This




More Space & Time News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) — Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) — The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) — Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins