Featured Research

from universities, journals, and other organizations

Setting Micro Gears In Motion

Date:
February 19, 2002
Source:
University Of California - Riverside
Summary:
The movement of gears and motors in micromachines just got easier because of the lateral Casimir force. This force acts tangential to two surfaces, resulting in a horizontal sliding motion of one surface against the other.

The movement of gears and motors in micromachines just got easier because of the lateral Casimir force. This force acts tangential to two surfaces, resulting in a horizontal sliding motion of one surface against the other.

The University of California, Riverside's Umar Mohideen, associate professor of physics, has performed the first demonstration of the lateral Casimir force (a shape-dependent Casimir force) in his laboratory. His findings will be published in an upcoming issue of Physical Review Letters. The Casimir force has its origins in virtual particles that exist in empty space.

"The virtual particles are also called quantum fluctuations," Mohideen said. "They are predicted for all the fundamental forces in physics." Mohideen's experiment deals with the electromagnetic force and relies on virtual photons or particles of light, which are intermediaries for the electromagnetic force.

The Dutch physicist Hendrik Casimir realized that the properties of the virtual particles could be controlled by introducing boundaries. He predicted that if two parallel metallic plates are brought very close to each other then the Casimir force, named after him, comes into play.

Mohideen explained that the force arises because the number of virtual photons between the plates is smaller than the number of photons outside the plates. "The photons outside bounce off the plates," he said. "In doing so, they push the plates together, effectively leading to an attractive force between the plates. This is the normal Casimir force, where normal means perpendicular. If the shape of the plates is changed, however, you get different forces."

Indeed, the Casimir force can also manifest itself as a repulsive force. While the force is attractive in nature for two parallel plates, for two hemispherical shells, whose circular rims can be placed against each other to form one sphere, the force is repulsive and tends to break the sphere apart. The lateral Casimir force, which Mohideen's laboratory has demonstrated and which MIT physicist Meharan Kardar predicted in 1997, is another such shape-dependent Casimir force. Its result: a horizontal sliding motion between two surfaces.

"The lateral Casimir force has wide applications," Mohideen said. "One can envision a device fabricated with two corrugated surfaces allowing for a sliding motion between the two surfaces. The normal Casimir force would move the membrane up and down in the vertical plane, while the lateral Casimir force would slide it back and forth. Thus, on a silicon chip you can have vertical and sliding motions of a micro device."

The Casimir force would have vast implications for micromachines. "The effect of the force on the individual parts of the machines would need to be considered," said Mohideen. "This would be important in the silicon chip industry."


Story Source:

The above story is based on materials provided by University Of California - Riverside. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - Riverside. "Setting Micro Gears In Motion." ScienceDaily. ScienceDaily, 19 February 2002. <www.sciencedaily.com/releases/2002/02/020219080529.htm>.
University Of California - Riverside. (2002, February 19). Setting Micro Gears In Motion. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2002/02/020219080529.htm
University Of California - Riverside. "Setting Micro Gears In Motion." ScienceDaily. www.sciencedaily.com/releases/2002/02/020219080529.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins