Featured Research

from universities, journals, and other organizations

Solar Wind Buffets Vast Jupiter Region, Team Approach Reveals

Date:
March 5, 2002
Source:
NASA/Jet Propulsion Laboratory
Summary:
Scientists simultaneously using a combination of NASA spacecraft have seen into the workings of an invisible whirling bubble of charged particles surrounding Jupiter. That bubble, Jupiter's magnetosphere, is the biggest object with distinct boundaries within our solar system, more than 100 times wider than Jupiter itself.

Scientists simultaneously using a combination of NASA spacecraft have seen into the workings of an invisible whirling bubble of charged particles surrounding Jupiter.

That bubble, Jupiter's magnetosphere, is the biggest object with distinct boundaries within our solar system, more than 100 times wider than Jupiter itself. It contracts in response to shock waves from the Sun, according to one report appearing in the journal Nature tomorrow. In all, seven reports appearing together will detail various results from a concerted research campaign that took advantage of the Saturn-bound Cassini spacecraft's flyby of Jupiter 14 months ago.

The campaign found extremely energetic electrons traveling near the speed of light close to Jupiter, as well as a vast nebula of neutral atoms, and triggers for glowing auroras near Jupiter's north and south poles.

"We're seeing results from a remarkable opportunity," said Dr. Scott Bolton, a physicist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and a co-author of three of the reports.

"We had one spacecraft, Galileo, inside the magnetosphere monitoring what was happening there at the same time another spacecraft, Cassini, was outside the magnetosphere monitoring the solar wind just upstream," Bolton said. The solar wind is particles from the Sun flowing outward through the solar system. Jupiter's magnetosphere, like Earth's, deflects the solar wind but gets pushed around by its gusts.

On Jan. 10, 2001, when Cassini and Galileo were more than 20 times farther from each other than Earth is from the Moon, each spacecraft encountered the boundary of Jupiter's magnetosphere while the bubble was contracting in response to an increase in solar-wind pressure.

"This is the first two-point measurement of the Jovian system actually responding to the solar wind," said Dr. William Kurth, physicist at the University of Iowa, Iowa City, and lead author of the Nature report on these results. "The combined observations of Galileo and Cassini help show us the relative importance of the influence of the solar wind and the factors affecting the magnetosphere from within -- primarily the energy from Jupiter's rotation and the supply of material from volcanoes on the moon Io." The Jupiter observations strengthen confidence in our understanding about Earth's protective magnetosphere.

Shock waves from outbursts on the Sun, carried outward on the solar wind and detected by Cassini, also stimulated radio emissions from deep within Jupiter's magnetosphere and brightened auroras at Jupiter's poles, Dr. Donald Gurnett of the University of Iowa reports. Those effects suggest that electron density and electric currents in the magnetosphere increase when it is compacted by the shock wave.

Besides Galileo, which has been orbiting Jupiter since 1995, and Cassini, scientists used two Earth orbiters -- the Hubble Space Telescope and Chandra X-ray Observatory – plus radio telescopes in New Mexico and Arizona to examine Jupiter's surroundings while Cassini was there.

Hubble images show patches of Jupiter's aurora stimulated by an event Galileo detected within the magnetosphere, reports Dr. Barry Mauk of Johns Hopkins University's Applied Physics Laboratory, Laurel, Md. The event is a surge of charged particles toward the planet, apparently analogous to similar aurora-triggering surges that release pent-up energy in Earth's magnetosphere. Some other features in Jupiter's aurora are "footprints" of currents flowing through the magnetosphere from three of the planet's large moons, reports Dr. John Clarke of Boston University. Dr. Randall Gladstone of the Southwest Research Institute, San Antonio, Texas, describes a 45-minute rhythm in auroras at X-ray wavelengths, likely linked to a still-unidentified stimulus in the outer portion of the magnetosphere.

Cassini carries a type of magnetosphere-imaging instrument no previous interplanetary spacecraft has had. The instrument not only showed some structural detail of Jupiter's magnetosphere, it also detected a cloud of neutral atoms stretching away from the planet as a "hot neutral wind," reports Dr. Stamatios Krimigis of Hopkins' Applied Physics Laboratory. The magnetic field holds charged particles in, but neutral ones escape to create a nebula of particles that extends beyond the magnetosphere.

High-energy electrons in radiation belts close to Jupiter emit radio waves that have been monitored from Earth for years. JPL's Bolton and other scientists used Cassini while it was near Jupiter to map details never seen before in those belts. About 2,300 students at high schools and middle schools across the country participated in a program of radio-telescope observations that aided interpretation of those Cassini observations.

Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL manages Cassini and Galileo for NASA’s Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "Solar Wind Buffets Vast Jupiter Region, Team Approach Reveals." ScienceDaily. ScienceDaily, 5 March 2002. <www.sciencedaily.com/releases/2002/03/020301072327.htm>.
NASA/Jet Propulsion Laboratory. (2002, March 5). Solar Wind Buffets Vast Jupiter Region, Team Approach Reveals. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2002/03/020301072327.htm
NASA/Jet Propulsion Laboratory. "Solar Wind Buffets Vast Jupiter Region, Team Approach Reveals." ScienceDaily. www.sciencedaily.com/releases/2002/03/020301072327.htm (accessed August 22, 2014).

Share This




More Space & Time News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins