Featured Research

from universities, journals, and other organizations

Penn State Engineers Boost Hydrogen Production From Fermentation

Date:
June 3, 2002
Source:
Penn State
Summary:
The cars powered by hydrogen fuel cells that the Bush Administration has partnered with the Detroit Big Three automakers to develop could eventually be pulling up to wastewater treatment plants for fill-ups, say Penn State environmental engineers.

The cars powered by hydrogen fuel cells that the Bush Administration has partnered with the Detroit Big Three automakers to develop could eventually be pulling up to wastewater treatment plants for fill-ups, say Penn State environmental engineers.

Related Articles


Dr. Bruce Logan, professor of environmental engineering, and his research group have shown they can boost hydrogen production 43 percent by using a continuous hydrogen release fermentation process. He explains that by using certain industrial wastewater as feedstock, the approach offers an abundant, "green," local source for hydrogen and potentially makes it a cheaper fuel than gasoline.

"Continuous fermentation is not hard to do and the high volumes of gas produced make it a potential source of supply for a wide variety of fuel cell applications besides cars and buses, including home power generation and the micro-fuel cells being developed for consumer products such as laptops, cell phones, smoke alarms, and calculators," Logan adds.

Logan and Dr. Sang-Eun Oh, postdoctoral fellow; Dr. In S. Kim, professor of environmental engineering, Kwang-Ju Institute of Science and Technology, and Steven Van Ginkel, doctoral candidate, are the authors of a paper, "Biological Hydrogen Production Measured in Batch Anaerobic Respirometers," published in the current (May) issue of the journal, Environmental Science and Technology. The paper details the group's experiments comparing the standard fermentation method, in which hydrogen is released from the processing vessels intermittently, with a method in which the gas is released continuously.

In the Penn State experiments, fermentation was conducted with bacteria from ordinary garden soil. The soil, collected from local farmland, was heat treated to kill hydrogen-consuming bacteria. While the heat treatment also kills non-hydrogen producing soil bacteria, it leaves hydrogen-producing bacteria in a dormant spore form that revives as soon as it is put in suitable conditions.

The researchers mixed the heat-treated soil with individual samples of glucose, sucrose, cellulose, lactate, potato starch and molasses. Fermentation of both glucose and sucrose with the heat-treated soil under slightly acidic conditions in the absence of oxygen produced high concentrations of hydrogen gas. Releasing the gas continuously during glucose processing resulted in 43 percent more hydrogen than when the gas was released intermittently.

Logan notes that wastewater from confectioners, canneries, sugar refineries, and other industries are rich in glucose and sucrose. "The conversion of the chemical energy in these sugars to electricity in fuel cells via hydrogen gas, provides a method for wastewater treatment and renewable energy production in one step. The greatest savings at treatment plants may result from reducing costs for aerators since aeration is the major operational expense at most wastewater treatment plants," says the Penn State researcher.

In addition, methane could also be generated via the same process and from the same materials to provide an additional source of clean energy for fuel cells.

Logan says, "Both hydrogen and methane production via fermentation could save money spent on aeration while at the same time making a wastewater treatment plant into a local power plant."

Van Ginkel notes that, "Generating hydrogen by fermentation is not new. Batch fermentation was used during World War II to produce industrial solvents for ammunition production. Small amounts of hydrogen produced early in the fermentation process were not recovered.

However, the industry later switched to steam reformation of petroleum to produce these industrial solvents when oil was cheap.

"Now, that oil has become more expensive, more efficient ways to generate hydrogen, for example the continuous fermentation processing method, may help us cross the barrier to realizing hydrogen's promise as the fuel of the future," he adds.

The research was supported by a grant from the National Science Foundation. Dr. Oh's participation was supported by Brain Korea 21 program funding which supports sending Korean graduate students abroad for study and research.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Penn State Engineers Boost Hydrogen Production From Fermentation." ScienceDaily. ScienceDaily, 3 June 2002. <www.sciencedaily.com/releases/2002/06/020603071300.htm>.
Penn State. (2002, June 3). Penn State Engineers Boost Hydrogen Production From Fermentation. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2002/06/020603071300.htm
Penn State. "Penn State Engineers Boost Hydrogen Production From Fermentation." ScienceDaily. www.sciencedaily.com/releases/2002/06/020603071300.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins