Featured Research

from universities, journals, and other organizations

Penn State Engineers Boost Hydrogen Production From Fermentation

Date:
June 3, 2002
Source:
Penn State
Summary:
The cars powered by hydrogen fuel cells that the Bush Administration has partnered with the Detroit Big Three automakers to develop could eventually be pulling up to wastewater treatment plants for fill-ups, say Penn State environmental engineers.

The cars powered by hydrogen fuel cells that the Bush Administration has partnered with the Detroit Big Three automakers to develop could eventually be pulling up to wastewater treatment plants for fill-ups, say Penn State environmental engineers.

Dr. Bruce Logan, professor of environmental engineering, and his research group have shown they can boost hydrogen production 43 percent by using a continuous hydrogen release fermentation process. He explains that by using certain industrial wastewater as feedstock, the approach offers an abundant, "green," local source for hydrogen and potentially makes it a cheaper fuel than gasoline.

"Continuous fermentation is not hard to do and the high volumes of gas produced make it a potential source of supply for a wide variety of fuel cell applications besides cars and buses, including home power generation and the micro-fuel cells being developed for consumer products such as laptops, cell phones, smoke alarms, and calculators," Logan adds.

Logan and Dr. Sang-Eun Oh, postdoctoral fellow; Dr. In S. Kim, professor of environmental engineering, Kwang-Ju Institute of Science and Technology, and Steven Van Ginkel, doctoral candidate, are the authors of a paper, "Biological Hydrogen Production Measured in Batch Anaerobic Respirometers," published in the current (May) issue of the journal, Environmental Science and Technology. The paper details the group's experiments comparing the standard fermentation method, in which hydrogen is released from the processing vessels intermittently, with a method in which the gas is released continuously.

In the Penn State experiments, fermentation was conducted with bacteria from ordinary garden soil. The soil, collected from local farmland, was heat treated to kill hydrogen-consuming bacteria. While the heat treatment also kills non-hydrogen producing soil bacteria, it leaves hydrogen-producing bacteria in a dormant spore form that revives as soon as it is put in suitable conditions.

The researchers mixed the heat-treated soil with individual samples of glucose, sucrose, cellulose, lactate, potato starch and molasses. Fermentation of both glucose and sucrose with the heat-treated soil under slightly acidic conditions in the absence of oxygen produced high concentrations of hydrogen gas. Releasing the gas continuously during glucose processing resulted in 43 percent more hydrogen than when the gas was released intermittently.

Logan notes that wastewater from confectioners, canneries, sugar refineries, and other industries are rich in glucose and sucrose. "The conversion of the chemical energy in these sugars to electricity in fuel cells via hydrogen gas, provides a method for wastewater treatment and renewable energy production in one step. The greatest savings at treatment plants may result from reducing costs for aerators since aeration is the major operational expense at most wastewater treatment plants," says the Penn State researcher.

In addition, methane could also be generated via the same process and from the same materials to provide an additional source of clean energy for fuel cells.

Logan says, "Both hydrogen and methane production via fermentation could save money spent on aeration while at the same time making a wastewater treatment plant into a local power plant."

Van Ginkel notes that, "Generating hydrogen by fermentation is not new. Batch fermentation was used during World War II to produce industrial solvents for ammunition production. Small amounts of hydrogen produced early in the fermentation process were not recovered.

However, the industry later switched to steam reformation of petroleum to produce these industrial solvents when oil was cheap.

"Now, that oil has become more expensive, more efficient ways to generate hydrogen, for example the continuous fermentation processing method, may help us cross the barrier to realizing hydrogen's promise as the fuel of the future," he adds.

The research was supported by a grant from the National Science Foundation. Dr. Oh's participation was supported by Brain Korea 21 program funding which supports sending Korean graduate students abroad for study and research.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Penn State Engineers Boost Hydrogen Production From Fermentation." ScienceDaily. ScienceDaily, 3 June 2002. <www.sciencedaily.com/releases/2002/06/020603071300.htm>.
Penn State. (2002, June 3). Penn State Engineers Boost Hydrogen Production From Fermentation. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2002/06/020603071300.htm
Penn State. "Penn State Engineers Boost Hydrogen Production From Fermentation." ScienceDaily. www.sciencedaily.com/releases/2002/06/020603071300.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins