Featured Research

from universities, journals, and other organizations

Penn State Engineers Boost Hydrogen Production From Fermentation

Date:
June 3, 2002
Source:
Penn State
Summary:
The cars powered by hydrogen fuel cells that the Bush Administration has partnered with the Detroit Big Three automakers to develop could eventually be pulling up to wastewater treatment plants for fill-ups, say Penn State environmental engineers.

The cars powered by hydrogen fuel cells that the Bush Administration has partnered with the Detroit Big Three automakers to develop could eventually be pulling up to wastewater treatment plants for fill-ups, say Penn State environmental engineers.

Dr. Bruce Logan, professor of environmental engineering, and his research group have shown they can boost hydrogen production 43 percent by using a continuous hydrogen release fermentation process. He explains that by using certain industrial wastewater as feedstock, the approach offers an abundant, "green," local source for hydrogen and potentially makes it a cheaper fuel than gasoline.

"Continuous fermentation is not hard to do and the high volumes of gas produced make it a potential source of supply for a wide variety of fuel cell applications besides cars and buses, including home power generation and the micro-fuel cells being developed for consumer products such as laptops, cell phones, smoke alarms, and calculators," Logan adds.

Logan and Dr. Sang-Eun Oh, postdoctoral fellow; Dr. In S. Kim, professor of environmental engineering, Kwang-Ju Institute of Science and Technology, and Steven Van Ginkel, doctoral candidate, are the authors of a paper, "Biological Hydrogen Production Measured in Batch Anaerobic Respirometers," published in the current (May) issue of the journal, Environmental Science and Technology. The paper details the group's experiments comparing the standard fermentation method, in which hydrogen is released from the processing vessels intermittently, with a method in which the gas is released continuously.

In the Penn State experiments, fermentation was conducted with bacteria from ordinary garden soil. The soil, collected from local farmland, was heat treated to kill hydrogen-consuming bacteria. While the heat treatment also kills non-hydrogen producing soil bacteria, it leaves hydrogen-producing bacteria in a dormant spore form that revives as soon as it is put in suitable conditions.

The researchers mixed the heat-treated soil with individual samples of glucose, sucrose, cellulose, lactate, potato starch and molasses. Fermentation of both glucose and sucrose with the heat-treated soil under slightly acidic conditions in the absence of oxygen produced high concentrations of hydrogen gas. Releasing the gas continuously during glucose processing resulted in 43 percent more hydrogen than when the gas was released intermittently.

Logan notes that wastewater from confectioners, canneries, sugar refineries, and other industries are rich in glucose and sucrose. "The conversion of the chemical energy in these sugars to electricity in fuel cells via hydrogen gas, provides a method for wastewater treatment and renewable energy production in one step. The greatest savings at treatment plants may result from reducing costs for aerators since aeration is the major operational expense at most wastewater treatment plants," says the Penn State researcher.

In addition, methane could also be generated via the same process and from the same materials to provide an additional source of clean energy for fuel cells.

Logan says, "Both hydrogen and methane production via fermentation could save money spent on aeration while at the same time making a wastewater treatment plant into a local power plant."

Van Ginkel notes that, "Generating hydrogen by fermentation is not new. Batch fermentation was used during World War II to produce industrial solvents for ammunition production. Small amounts of hydrogen produced early in the fermentation process were not recovered.

However, the industry later switched to steam reformation of petroleum to produce these industrial solvents when oil was cheap.

"Now, that oil has become more expensive, more efficient ways to generate hydrogen, for example the continuous fermentation processing method, may help us cross the barrier to realizing hydrogen's promise as the fuel of the future," he adds.

The research was supported by a grant from the National Science Foundation. Dr. Oh's participation was supported by Brain Korea 21 program funding which supports sending Korean graduate students abroad for study and research.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Penn State Engineers Boost Hydrogen Production From Fermentation." ScienceDaily. ScienceDaily, 3 June 2002. <www.sciencedaily.com/releases/2002/06/020603071300.htm>.
Penn State. (2002, June 3). Penn State Engineers Boost Hydrogen Production From Fermentation. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2002/06/020603071300.htm
Penn State. "Penn State Engineers Boost Hydrogen Production From Fermentation." ScienceDaily. www.sciencedaily.com/releases/2002/06/020603071300.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins