Featured Research

from universities, journals, and other organizations

Astrophysicists Discover Possible Nanodiamond Formation In The Early Solar System

Date:
July 12, 2002
Source:
Lawrence Livermore National Laboratory
Summary:
An astrophysicist from Lawrence Livermore National Laboratory's Institute for Geophysics and Planetary Physics has found that some nanodiamonds, the most famous and exotic form of stardust, may instead have formed within the inner solar system.

LIVERMORE, Calif. — An astrophysicist from Lawrence Livermore National Laboratory's Institute for Geophysics and Planetary Physics has found that some nanodiamonds, the most famous and exotic form of stardust, may instead have formed within the inner solar system.

Related Articles


The findings argue with the wide held belief that nanodiamonds recovered from meteorites from the asteroid belt have been the most abundant type of presolar stardust grain.

IGPP Director John Bradley, in conjunction with scientists from the Georgia Institute of Technology, the University of Washington, NASA Goddard Space Flight Center and the Natural History Museum in London, report their discovery in today's edition of Nature.

"We presumed that if we studied (micro) meteorites (also known as interplanetary dust particles) from comets further out in our solar system, we would find more nanodiamonds," Bradley said. "But we're just not seeing them. One theory is that some, perhaps most, nanodiamonds formed within the inner solar system and are not presolar at all."

Interplanetary dust particles are collected in the stratosphere using NASA ER2 aircraft and they are made up of irregularly shaped grains of carbon and/or silicates.

One origin of stardust is from supernovae, the cataclysmic deaths of a star. For more than 30 years, astrophysicists have looked to stardust, a sort of remnant of stars, to tell the story of our solar system's origins.

But Bradley and the group of researchers report that at least some of the oldest cometary interplanetary dust particles contain little or no nanodiamond stardust at all.

"This raises all sorts of questions about the origins of our solar system," Bradley said. "Our findings are consistent with recent research that has detected nanodiamonds within the accretion discs of other young stars that are similar to our early solar system."

The group concludes that an alternative explanation for the lack of nanondiamonds in the early meteorites is that all meteoritic nanodiamonds are presolar, but that their abundance decreases the further they are from the sun. In that case, our understanding of large-scale transport and circulation within the early solar system is incomplete.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.


Story Source:

The above story is based on materials provided by Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Livermore National Laboratory. "Astrophysicists Discover Possible Nanodiamond Formation In The Early Solar System." ScienceDaily. ScienceDaily, 12 July 2002. <www.sciencedaily.com/releases/2002/07/020712073511.htm>.
Lawrence Livermore National Laboratory. (2002, July 12). Astrophysicists Discover Possible Nanodiamond Formation In The Early Solar System. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2002/07/020712073511.htm
Lawrence Livermore National Laboratory. "Astrophysicists Discover Possible Nanodiamond Formation In The Early Solar System." ScienceDaily. www.sciencedaily.com/releases/2002/07/020712073511.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Space & Time News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Video Shows Stars If They Were as Close to Earth as Sun

Video Shows Stars If They Were as Close to Earth as Sun

Buzz60 (Jan. 30, 2015) Russia&apos;s space agency created a video that shows what our sky would look like with different star if they were as close as our sun. Patrick Jones (@Patrick_E_Jones) walks us through the cool video. Video provided by Buzz60
Powered by NewsLook.com
Dog-Loving Astronaut Wins Best Photo of 2015

Dog-Loving Astronaut Wins Best Photo of 2015

Buzz60 (Jan. 30, 2015) Retired astronaut and television host, Leland Melvin, snuck his dogs into the NASA studio so they could be in his official photo. As Mara Montalbano (@maramontalbano) shows us, the secret is out. Video provided by Buzz60
Powered by NewsLook.com
NASA Holds Memorial to Remember Astronauts

NASA Holds Memorial to Remember Astronauts

AP (Jan. 29, 2015) NASA is remembering 17 astronauts who were killed in the line of duty and dozens more who have died since the agency&apos;s beginning. A remembrance ceremony was held Thursday at NASA&apos;s Marshall Space Flight Center in Alabama. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins