Featured Research

from universities, journals, and other organizations

Atom Research May Help Detect Volcanoes And Oceans

Date:
July 19, 2002
Source:
NASA/Jet Propulsion Laboratory
Summary:
Breakthrough research on waves of ultra-cold atoms may lead to sophisticated atom lasers that might eventually predict volcanic eruptions on Earth and map a probable subsurface ocean on Jupiter's moon Europa.

Breakthrough research on waves of ultra-cold atoms may lead to sophisticated atom lasers that might eventually predict volcanic eruptions on Earth and map a probable subsurface ocean on Jupiter's moon Europa.

The atoms were manipulated to form tidy bundles of waves, called solitons, which retained their shape and strength. They were created in a laboratory at Rice University, Houston, under a grant from NASA's Biological and Physical Research Program through the Jet Propulsion Laboratory, Pasadena, Calif.

Normally, when a wave forms -- whether in water, light or atoms -- it tends to spread out as it travels. Not so with a soliton wave. It maintains its perfect shape without spreading. In the Rice University research, the solitons are localized bundles of atom waves.

Atom-wave solitons could be used in advanced lasers, which use atoms instead of light photons. Dr. Randall Hulet, the Rice University physics and astronomy professor who led the research team, said atom lasers may have many applications, some not yet envisioned.

"Forty years ago, no one imagined that lasers would be used to play music in our cars or scan our food at the grocery store checkout," said Hulet. "We're getting our first glimpse of a wondrous and sometimes surprising set of quantum phenomena, and there's no way to know exactly what may come out of it."

Hulet said atom lasers might improve instruments that study gravity variations to locate and measure underground water, minerals, oil, caves and volcanic magma on Earth.

"Eventually, atom-wave lasers may enhance sensors for studying Earth and various bodies in the solar system," said Dr. Lute Maleki, principal investigator for the Quantum Gravity Gradient Project at JPL. "With these advanced sensors, we'll be able to produce a 3-D map of underground features. By measuring levels of underground magma, for example, scientists may be able to predict volcanic eruptions. This technology could be used on a spacecraft to map the ocean believed to lie beneath Europa's icy crust."

In addition, atom lasers may yield extremely precise gyroscope navigation for air and space travel. Computers would run faster if atom lasers were used to write directly onto computer chips.

The first recorded observation of a soliton wave was in 1834, when a man in Scotland saw a barge stop suddenly in a canal. This created a large bow wave, which traveled at about 8 miles per hour without shrinking or spreading. The man followed the wave on horseback for about a mile until he lost sight of it in the windings of the canal. Scientists now know that this soliton water wave formed because of particular relationships between the depth and width of the canal.

In their laboratory, Hulet and his team confined lithium atoms within magnetic fields, cooled them with lasers to one billion times colder than room temperature, and confined them in a narrow beam of light that pushed them into a single file formation. The atoms formed a type of matter called a Bose-Einstein condensate, a quantum state where classical laws of physics go out the window and new behaviors govern the atoms. Instead of hitting each other and bouncing off like bumper cars, the atoms join together and function as one entity. The team actually observed a "soliton train" of multiple waves.

Hulet co-authored a paper on the research, which appeared in the May 9 issue of the journal Nature, with Rice University graduate students Kevin Strecker and Guthrie Partridge, and Dr. Andrew Truscott, formerly a post-doctoral researcher at Rice and currently on the faculty at Australian National University in Canberra.

More information on the experiment and the Biological and Physical Research Program and the Fundamental Physics Program is available at:

http://atomcool.rice.edu

http://spaceresearch.nasa.gov

http://funphysics.jpl.nasa.gov

Hulet's research was funded by NASA, the Office of Naval Research, the National Science Foundation, and the R.A. Welch Foundation. JPL manages the Fundamental Physics in Microgravity Research Program for NASA's Office of Biological and Physical Research, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "Atom Research May Help Detect Volcanoes And Oceans." ScienceDaily. ScienceDaily, 19 July 2002. <www.sciencedaily.com/releases/2002/07/020719074123.htm>.
NASA/Jet Propulsion Laboratory. (2002, July 19). Atom Research May Help Detect Volcanoes And Oceans. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2002/07/020719074123.htm
NASA/Jet Propulsion Laboratory. "Atom Research May Help Detect Volcanoes And Oceans." ScienceDaily. www.sciencedaily.com/releases/2002/07/020719074123.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins