Featured Research

from universities, journals, and other organizations

Free Software Predicts How And When Steel Beams Will Buckle

Date:
September 4, 2002
Source:
Johns Hopkins University
Summary:
A free computer program developed by a Johns Hopkins civil engineering researcher allows designers of thin-walled structures, including buildings and bridges, to test their stability and safety before a single beam is put into place. This modeling software, devised by Benjamin W. Schafer, asks designers to enter their materials, the geometry of their structure and the load it is expected to withstand. The program quickly reports how and under what conditions the structural components will buckle.

A free computer program developed by a Johns Hopkins civil engineering researcher allows designers of thin-walled structures, including buildings and bridges, to test their stability and safety before a single beam is put into place. This modeling software, devised by Benjamin W. Schafer, asks designers to enter their materials, the geometry of their structure and the load it is expected to withstand. The program quickly reports how and under what conditions the structural components will buckle.

Related Articles


The computer tool could become increasingly important as construction rules change to accommodate innovations in structural design "To keep costs down, many people today are looking for maximum strength with the minimum amount of materials," says Schafer, an assistant professor in the Department of Civil Engineering. "So very often, you end up with what we call thin-walled structures. But instability or buckling can cause these structures to collapse or 'fail'. If you press down on the top of a plastic straw, there's basically only one way it can buckle. With more complicated thin-walled structures, there are many more ways this can happen. Engineers need to predict how and when this will happen, so they can design buildings that won't buckle under a particular load. This software is a tool that does just that."

Schafer's software, called CUFSM, is available for free downloading on his Web site: http://www.ce.jhu.edu/bschafer.

The civil engineering researcher recently updated the program to provide a far more user-friendly interface. It is available in a stand-alone version for users of Windows and in another version that is compatible with the popular MatLab software, which is available on virtually all computer platforms. The Web site also features tutorials and examples to help designers and students learn to use CUFSM.

The computer program is an extension of research Schafer began while earning his doctorate in structural engineering from Cornell University in 1997. (The software's name is short for Cornell University Finite Strip Method because Schafer developed his first version of the program at that school.) At Johns Hopkins, Schafer's research focuses on the behavior and design of cold-formed steel sheet metal bent into various shapes. Cold-formed steel has become a popular structural alternative to timber and is used extensively in low-rise buildings. It is utilized in a variety of applications, supporting floors, roofs and walls in industrial, commercial and residential buildings. The more general category of thin-walled structures can range from the previously mentioned industrial and residential buildings to box girder bridges, ship hulls and aircraft skins, as well as buried structures such as tanks, pipes and culverts. "The idea is to provide maximum strength with the minimum material," Schafer says. "The design is critical. Even small changes in the geometry can affect the strength of the structure and how it might buckle. Placing little bumps or folds in the members, using corrugated versus flat sheet metal -- all of these things can make a difference."

To test how such changes in geometry and materials will affect the stability of a thin-walled structure, an engineer can enter this data in the CUFSM software to determine how much compression and/or bending the structure can tolerate before it buckles. In this way, the sturdiest and most cost-effective design can be developed long before the structure is built.

Currently, civil engineers must adhere to rigid building codes that severely limit their design options, Schafer says. These rules were adopted to ensure that structures are safe and to maintain a level playing field among competitors. "These highly prescriptive building codes accomplished that, but they also took away the opportunity for structural innovation," Schafer says. "My software can help bring it back by giving engineers a way to predict buckling for structures that don't fall within the rules."

The Johns Hopkins researcher says the construction industry is already working toward revised guidelines that will allow new shapes of strong yet thin steel beams to help reduce costs. "Knowing this is going to be allowed is encouraging people to manufacture more innovative cross-section pieces," Schafer says. "This modeling technique will make a big difference to the industry. It fundamentally changes what you can design."

To prepare the next generation of structural designers for this change and to teach them how buckling can occur, Schafer also uses the software as a teaching tool in his undergraduate civil engineering classes at Johns Hopkins. "This is how engineering design will be done in the very near future," he says.

Schafer's research has been funded by the American Iron and Steel Institute and the Metal Building Manufacturers Association.


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Free Software Predicts How And When Steel Beams Will Buckle." ScienceDaily. ScienceDaily, 4 September 2002. <www.sciencedaily.com/releases/2002/09/020904073045.htm>.
Johns Hopkins University. (2002, September 4). Free Software Predicts How And When Steel Beams Will Buckle. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2002/09/020904073045.htm
Johns Hopkins University. "Free Software Predicts How And When Steel Beams Will Buckle." ScienceDaily. www.sciencedaily.com/releases/2002/09/020904073045.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins