Featured Research

from universities, journals, and other organizations

Noninvasive Optical Biopsies On The Horizon

Date:
June 12, 2003
Source:
Cornell University
Summary:
A new imaging technique that could lead to optical biopsies without removal of tissue is being reported by biophysical scientists at Cornell and Harvard universities.

ITHACA, N.Y. -- A new imaging technique that could lead to optical biopsies without removal of tissue is being reported by biophysical scientists at Cornell and Harvard universities. The advance in biomedical imaging enables noninvasive microscopy scans through the surface of intact organs or body systems. Demonstrations of the new technique are producing images of diseased tissue at the cellular level with unprecedented detail.

The new imaging technique takes advantage of a Cornell-patented fluorescence emission microscopy system and the natural fluorescence of certain bodily constituents.

Diagnoses of cancers and neurodegenerative diseases, such as Alzheimer's disease, are two applications suggested by the researchers in their report in Proceedings of the National Academy of Sciences (PNAS , June 10, 2003), "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation." The researchers predict that it should be possible to obtain endoscopic and laparoscopic images of tissues at the cellular level from deep within living animals, or even human patients, thus enabling a new form of optical biopsy.

The researchers have demonstrated the new imaging technique by making live-tissue intrinsic fluorescence scans of autopsy samples from the brains of patients with Alzheimer's disease and by imaging mammary gland tumors in mice that serve as models of human cancer. Side-by-side comparison with conventional medical biopsy images of thin embalmed sections of the same organs reveals that the new method provides at least equal information, and in some cases contains additional diagnostic details not found in the conventional biopsies, which require invasive surgery.

Another advantage of live-tissue intrinsic emission imaging, the researchers say, is that the scans can be made through the surface of intact organs or body systems. By comparison, histopathology studies generally are performed on biopsy samples removed from subjects, then "fixed" or embalmed and stained with labeling chemicals, which involves extended time delays.The Cornell-Harvard team incorporated a technology into the new imaging procedure called multiphoton microscopy, invented in 1989 by Watt W. Webb, Cornell's S.B. Eckert Professor of Engineering and professor of applied physics, and Winfried Denk, now director of the Max-Planck-Institut für Medizinische Forschung Biomedizinische Optik, Germany.

Members of the imaging team included Webb, who also is director of the National Institutes of Health-funded Developmental Resource for Biophysical Imaging and Optoelectronics (DRBIO); Warren R. Zipfel, associate director of DRBIO, who designed and built the experimental system; Rebecca M. Williams, a DRBIO researcher who conducted many of the imaging tests; Richard Christie and Bradley T. Hyman of the Alzheimer Research Unit at Harvard Medical School's Massachusetts General Hospital, who provided human brain tissue and diagnosed Alzheimer's disease with the new imaging technique and the more traditional histopathology stain methods; and Alexander Yu Nikitin, assistant professor of pathology in the Department of Biomedical Science in Cornell's College of Veterinary Medicine, who developed genetically engineered mouse models with humanlike cancers and then performed conventional diagnostic histopathology on the specimens.

"Multiphoton microscopy produces high-resolution, three-dimensional pictures of tissues with minimal damage to living cells," Webb explains. "Using a laser that produces a stream of extremely short, intense pulses, the probability that two or three interact with an individual biological molecule at the same time is greatly increased. When this occurs, their individual energies can combine. This cumulative effect is the equivalent of delivering one photon with twice the energy (or half the wavelength) in the case of two-photon excitation, or three times the energy (one-third the wavelength) in three-photon excitation," Webb notes.

The scanning laser microscope moves the focused beam of pulsed photons across a sample at a precise depth (plane of focus) so that cells above or below the plane are not affected, according to Webb. When repeated scans at different focal planes are "stacked," a three-dimensional picture emerges.

"Multiphoton microscopy is extremely well-suited to take advantage of the natural fluorescence [the ability to give off light under bombardment by radiant energy] of certain constituents in living tissue," says Zipfel. "Some amino acids [such as tryptophan and tyrosine] fluoresce naturally with ultraviolet light. Furthermore, many of the body's vitamin derivatives, such as retinol and riboflavin, emit longer-wavelength fluorescence."


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Noninvasive Optical Biopsies On The Horizon." ScienceDaily. ScienceDaily, 12 June 2003. <www.sciencedaily.com/releases/2003/06/030612091423.htm>.
Cornell University. (2003, June 12). Noninvasive Optical Biopsies On The Horizon. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2003/06/030612091423.htm
Cornell University. "Noninvasive Optical Biopsies On The Horizon." ScienceDaily. www.sciencedaily.com/releases/2003/06/030612091423.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) — The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins