Featured Research

from universities, journals, and other organizations

Recycled Materials Make 100-year 'Long Life' Bridges Possible

Date:
May 20, 2004
Source:
Penn State
Summary:
Penn State engineers have designed 10 concrete mixtures containing industrial by-products that make it possible for concrete bridge decks to last three times longer, or 75 to 100 years.

University Park, Pa. -- Penn State engineers have designed 10 concrete mixtures containing industrial by-products that make it possible for concrete bridge decks to last three times longer, or 75 to 100 years.

Related Articles


"The exact life expectancy of bridges constructed with these mixtures will not be known for many years," said Paul J. Tikalsky, associate professor of civil and environmental engineering, who led the study. "However, in full-scale trials, each of the mixtures optimizes the ingredients to produce concrete with substantially lower permeability, higher electrical resistivity and lower cracking potential than the standard bridge deck concrete used in Pennsylvania for the past 30 years."

He added, "The cost of bridges constructed with these mixtures is nearly identical to the previous generation of bridges. With life expectancies at least three times as long, the life-cycle cost savings will be more than $35 million annually in Pennsylvania with the added benefit of using environmentally friendly materials to contribute to a more sustainable future for the highway infrastructure."

Over the next two years, 10 bridges on Interstate 99 between Bald Eagle and Port Matilda, Pa., will be constructed using the mixtures designed and tested by the Penn State team. Tikalsky and his team will fit the bridges with sensors that will relay information about strain, temperature and corrosion to a data station at the University. The strains and temperature in the bridge deck will be monitored at 30-minute intervals during construction and hourly thereafter. Measurements related to corrosion will be taken three months after construction and every two years thereafter.

Tikalsky presented the Penn State team's results in a paper, "High-Performance Concrete Bridge Deck Initiative - Performance Based Specifications in Pennsylvania," May 18 at the Concrete Bridge Council Conference in Charlotte, N.C. His co-authors are David G. Tepke, doctoral candidate in civil engineering, Geoffrey Kurgan, graduate assistant, and Andrea Schokker, assistant professor of civil and environmental engineering.

In the first phase of the project, the team developed mixture designs with 154 combinations of materials. Total cement content and percentages of additives, including fly ash, silica fume, ground granulated blast furnace slag and an alkaline earth mineral admixture, were varied and the mixtures tested to see which met current structural and physical requirements.

"Fly ash, silica fume and slag are all industrial waste products that have been used previously in some types of construction,” Tikalsky noted. “These additives reduce the permeability of concrete and deter salts from entering. The additives also increase electrical resistance. So, in 40 or 50 years when water and salt eventually reach the steel reinforcement rods in the bridge deck, corrosion won't progress as rapidly."

Twenty-five of the original concrete mixture designs were selected for additional testing. Selection was based on the mixtures meeting basic technical properties and offering a diverse range of solutions to long-term durability. Each of the mixtures was produced in a full truck trial. The concrete was delivered to the lab where durability samples were fabricated and tested over a two-year period.

A second phase of testing subjected the 25 phase-one finalists to permeability, porosity, shrinkage, freeze-thaw, hydration, strength, salt scaling and resistivity studies that identified 10 mixtures for testing in 10 bridges in the "100 Year Highway" project on I-99.

"Long-term monitoring of these bridges is the only true measure of the success of this philosophy of extending the life of the infrastructure,” Tikalsky said. “Benchmarking the permeability, shrinkage, corrosion potential, chloride ingress, cracking and other properties of the structure over a long period of time will allow successive generations of bridges to further optimize the design of bridges for durability."

The project was supported by the Pennsylvania Department of Transportation, the Federal Highway Administration, the Silica Fume Association, Cement Chemistry Systems, the Concrete Research Council, Aquron Inc., New Enterprise Corp., Centre Concrete Co., Keystone Cement Co., Essroc Cement Co. and the Northeast Cement Shippers Association.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Recycled Materials Make 100-year 'Long Life' Bridges Possible." ScienceDaily. ScienceDaily, 20 May 2004. <www.sciencedaily.com/releases/2004/05/040520065409.htm>.
Penn State. (2004, May 20). Recycled Materials Make 100-year 'Long Life' Bridges Possible. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2004/05/040520065409.htm
Penn State. "Recycled Materials Make 100-year 'Long Life' Bridges Possible." ScienceDaily. www.sciencedaily.com/releases/2004/05/040520065409.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins