## Featured Research

from universities, journals, and other organizations

# The Poppy-seed Bagel Theorem

Date:
December 2, 2004
Source:
Vanderbilt University
Summary:
If you run into Ed Saff at a cocktail party and ask him what he does for a living, the mathematician is likely to reply that he is working on a "method for creating the perfect poppy-seed bagel." Then he'll pause and add, "Maybe that's not the most accurate description, but it's the most digestible."

### Share This

Mathematics professors Doug Hardin, left, and Ed Saff.
Credit: Photo by Daniel Dubois / Courtesy of Vanderbilt University

If you run into Ed Saff at a cocktail party and ask him what he does for a living, the mathematician is likely to reply that he is working on a "method for creating the perfect poppy-seed bagel." Then he'll pause and add, "Maybe that's not the most accurate description, but it's the most digestible."

More accurately, Saff, who is a mathematics professor at Vanderbilt, has been working with his colleague Associate Professor of Mathematics Doug Hardin to come up with a new and improved way to distribute points uniformly on various types of surfaces. Plotting a large set of equidistant points on a flat surface doesn't take a mathematician: Any draftsman can do it. Throw in a curve or two, however, and the problem gets much tougher. For complex surfaces like spheres and bagels (which form a shape that mathematicians call a torus), it becomes so hard, in fact, that mathematicians have not found a way to do it with absolute precision.

Recently, Hardin and Saff analyzed a method for generating large numbers of points that are spread with near uniformity over practically any surface of any dimension. Their effort is described in the cover article of the November issue of Notices of the American Mathematical Society.

The procedure has a surprising number of applications. Among other things, it comes in handy when trying to digitize curved surfaces for computer graphics and animations with greater efficiency, in placing the elements of a sonar net on the ocean bottom in the best locations to detect the presence of submarines, and in testing radar systems in aircraft to ensure uniform coverage.

Their theorems also help explain a variety of natural phenomena. They describe some well known patterns such as that of spores on spherical pollen grains and the way electrons distribute themselves on the surface of a sphere. They also promise to provide new insights into the nature of more complex patterns such as the surface structures of some viruses and the locations of cracks in crystalline materials. "It's a nice mix of mathematical theory, computation and physics," says Hardin.

The new results are built on Saff's previous work in collaboration with A. B. J. Kuijlaars of Katholieke Universiteit Leuven, Belgium. It dealt with optimal designs of soccer-ball shaped objects called fullerenes, which are constructed from properly selected points on the surface of a sphere. Saff and Hardin have extended that work so that it is no longer limited to spherical surfaces, but now applies to elliptical, toroidal, saddle and other two-dimensional surfaces, as well as three-dimensional volumes. (They also handle surfaces with four or more dimensions, most of which don't have known physical manifestations but are of importance in areas such as message coding.)

Hardin and Saff's approach assumes that there is a repelling force acting between the points, and then, depending on the strength of the force, positions the points in the most energy-efficient manner (one that minimizes the total amount of energy in the system). For example, if the points strongly repel each other, then they tend to spread apart until there is as much distance between them as possible.

In particular, the mathematicians investigated equilibrium cases in which the repelling force between any pair of particles is inversely proportional to the distance between them raised to a power. Their formulation is a generalization of the inverse square law that is well known in physics, where it describes the behavior of forces such as electrical charge. In this case, however, the power depends on a parameter labeled "s." Hardin and Saff have shown that when "s" is small, the points act as if they are responding to a long-range force, and when "s" is large, they act as if they are subject to a short-range force. (In these terms, the familiar forces of gravity and electromagnetism are long-range forces, while the strong force that binds the atomic nucleus together is a short-range force.)

"Think of a room full of people," says Hardin. "In the short-range case, they act like fighting dictators and move until they are spread uniformly around the room. In the long-range case, however, they act as if they are afraid of crowds and end up lining the edge of the room."

Such long-range/short-range behavior is illustrated by the distribution of points on the surface of a torus (a.k.a. bagel). In the case of a thousand points, when "s" is small, the points line up along the outer rim of the bagel and look something like the pattern of treads on a tire. As the value of "s" increases, however, the points spread out over more and more of the surface until they reach the stage where they are spread as uniformly as possible. As "s" increases beyond that critical value, however, the points may move about but the overall uniformity remains the same.

Hardin and Saff have also discovered – and rigorously justified – that this critical value of "s" is precisely equal to the dimension of the surface to which the points are restricted. In the case of the bagel, for example, using a value of "s" greater than or equal to two produces the most uniform distribution of seeds, resulting in the "nearly perfect" poppy-seed bagel. But using a value of "s" less than two will not spread the seeds evenly.

The insights that this model provides may be useful in creating new materials on the micron scale with novel physical and electrical properties. The mathematicians are collaborating with physicists Mark Bowick of Syracuse University and Alex Travesset at Iowa State University to explore this possibility. In particular, the researchers believe that an improved understanding of the relationship between certain chemical forces and surface shapes will allow them to create new kinds of thin films and self-assembling membranes which could be useful in certain medical applications.

"I think that we are really at the very beginning of something very big and very exciting that we couldn't see when we looked only at the sphere," says Saff.

"Now, if we could only figure out how to design the perfect cheese danish!"

Story Source:

The above story is based on materials provided by Vanderbilt University. Note: Materials may be edited for content and length.

Cite This Page:

Vanderbilt University. "The Poppy-seed Bagel Theorem." ScienceDaily. ScienceDaily, 2 December 2004. <www.sciencedaily.com/releases/2004/11/041130075455.htm>.
Vanderbilt University. (2004, December 2). The Poppy-seed Bagel Theorem. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2004/11/041130075455.htm
Vanderbilt University. "The Poppy-seed Bagel Theorem." ScienceDaily. www.sciencedaily.com/releases/2004/11/041130075455.htm (accessed August 29, 2014).

## More Computers & Math News

Friday, August 29, 2014

### Featured Research

from universities, journals, and other organizations

### Featured Videos

from AP, Reuters, AFP, and other news services

JPMorgan Chase Confirms Possible Cyber Attack

### JPMorgan Chase Confirms Possible Cyber Attack

Reuters - US Online Video (Aug. 28, 2014) — Attackers stole checking and savings account information and lots of other data from JPMorgan Chase, according to the New York Times. Other banks are believed to be victims as well. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Spend 2 Minutes Watching This Smartwatch Roundup

### Spend 2 Minutes Watching This Smartwatch Roundup

Newsy (Aug. 28, 2014) — LG announces a round-faced smartwatch, Samsung adds 3G connectivity to its latest wearable, and Apple will reportedly announce the iWatch on Sept. 9. Video provided by Newsy
Powered by NewsLook.com
Why Apple Might Add Mobile Payment Options To iPhone 6

### Why Apple Might Add Mobile Payment Options To iPhone 6

Newsy (Aug. 28, 2014) — A report by Wired suggests Apple's next iPhone will feature a mobile payment system and near-field communication. Video provided by Newsy
Powered by NewsLook.com
Hackerspace Provides Hackers Creative Haven

### Hackerspace Provides Hackers Creative Haven

AP (Aug. 27, 2014) — HeatSync Labs, a so-called hackerspace in Mesa, Arizona provides members and the public alike a space to allow their creative juices to flow and make their tech dreams into a reality. (Aug 27) Video provided by AP
Powered by NewsLook.com

## Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):

Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

## In Other News

... from NewsDaily.com

Save/Print:
Share:

## Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

## Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

## Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters