New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Knot theory

Knot theory is the mathematical branch of topology that studies mathematical knots, which are defined as embeddings of a circle in 3-dimensional Euclidean space, R3. This is basically equivalent to a conventional knotted string with the ends joined together to prevent it from becoming undone. Two mathematical knots are equivalent if one can be transformed into the other via a deformation of R3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself.

Knots can be described in various ways. Given a method of description, however, there may be more than one description that represents the same knot. For example, a common method of describing a knot is a planar diagram. But any given knot can be drawn in many different ways using a planar diagram. Therefore, a fundamental problem in knot theory is determining when two descriptions represent the same knot. One way of distinguishing knots is by using a knot invariant, a "quantity" which remains the same even with different descriptions of a knot.

The concept of a knot has been extended to higher dimensions by considering n-dimensional spheres in m-dimensional Euclidean space. This was investigated most actively in the period 1960-1980, when a number of breakthroughs were made. In recent years, low dimensional phenomena have garnered the most interest.

Research in knot theory began with the creation of knot tables and the systematic tabulation of knots. While tabulation remains an important task, today's researchers have a wide variety of backgrounds and goals.

In the last 30 years, knot theory has also become a tool in applied mathematics. Chemists and biologists use knot theory to understand, for example, chirality of molecules and the actions of enzymes on DNA.

Related Stories
 


Matter & Energy News

August 30, 2025

Quantum scientists in Innsbruck have taken a major leap toward building the internet of the future. Using a string of calcium ions and finely tuned lasers, they created quantum nodes capable of generating streams of entangled photons with 92% ...
Rice University physicists confirmed that flat electronic bands in kagome superconductors aren’t just theoretical, they actively shape superconductivity and magnetism. This breakthrough could guide the design of next-generation quantum materials ...
A Vermont research team has cracked a 90-year-old puzzle, creating a quantum version of the damped harmonic oscillator. By reformulating Lamb’s classical model, they showed how atomic vibrations can be fully described while preserving quantum ...
In just one afternoon, scientists used a nanoparticle “megalibrary” to find a catalyst that matches or exceeds iridium’s performance in hydrogen fuel production, at a fraction of the ...
While superconducting qubits are great at fast calculations, they struggle to store information for long periods. A team at Caltech has now developed a clever solution: converting quantum information into sound waves. By using a tiny device that ...
Researchers have developed a blueprint for weaving hopfions—complex, knot-like light structures—into repeating spacetime crystals. By exploiting two-color beams, they can generate ordered chains and lattices with tunable topology, potentially ...
Researchers in Germany have unveiled the Metafiber, a breakthrough device that allows ultra-precise, rapid, and compact control of light focus directly within an optical fiber. Unlike traditional ...
Hydrogen fuel cells could power cars, devices, and homes with nothing but water as a byproduct—but platinum’s cost holds them back. Chinese researchers have now unveiled a breakthrough iron-based catalyst that could rival platinum while boosting ...
A research team created a plant-inspired molecule that can store four charges using sunlight, a key step toward artificial photosynthesis. Unlike past attempts, it works with dimmer light, edging closer to real-world solar fuel ...
Scientists have cracked one of chemistry’s toughest challenges with indoles, using copper to unlock a spot once thought too stubborn to change. The discovery could pave the way for easier, cheaper ...
Scientists using Google’s quantum processor have taken a major step toward unraveling the deepest mysteries of the universe. By simulating fundamental interactions described by gauge theories, the ...
Physicists have built a novel superconducting platform that mimics hidden vortex states once thought unobservable. Their "backdoor" method overcomes experimental limits, letting them control quantum behavior on demand. The discovery could pave the ...

Latest Headlines

updated 12:56 pm ET