Featured Research

from universities, journals, and other organizations

Breakthrough Will Help Protect Astronauts And Spacecraft

Date:
September 8, 2005
Source:
British Antarctic Survey
Summary:
A breakthrough by a team of British, US and French scientists will help protect astronauts, spacecraft and satellites from radiation hazards experienced in space. Reporting in the journal Nature this week, the team describe how their study of rare and unusual space storms provided a unique opportunity to test conflicting theories about the behaviour of high energy particles in the Van Allen radiation belts - a volatile region 12000 miles (19,000 km) above the Earth.

This data-based visualization shows the Van Allen Belts pulsing from solar particles over ten days. The gap that appears toward the end shows a cleared-out safe zone for satellites.
Credit: NASA/Tom Bridgman

A breakthrough by a team of British, US and French scientists will helpprotect astronauts, spacecraft and satellites from radiation hazardsexperienced in space.

Reporting in the journal Nature this week, the team describehow their study of rare and unusual space storms provided a uniqueopportunity to test conflicting theories about the behaviour of highenergy particles in the Van Allen radiation belts* - a volatile region12000 miles (19,000 km) above the Earth.

Lead author, Dr Richard Horne of the British Antarctic Survey(BAS) says"Solar storms can increase radiation in the Van Allen belts to levelsthat pose a threat to spacecraft. As modern society relies increasinglyon satellites for business, communications, and security, it isimportant to understand the environment that spacecraft operate in sothat we can help protect our space investment.

"For a long time scientists have been trying to explain whythe number of charged particles inside the belts vary so much. Ourmajor breakthrough came when we observed two rare space storms thatoccurred almost back-to-back in October and November 2003. During thestorms part of the Van Allen radiation belt was drained of electronsand then reformed much closer to the Earth in a region usually thoughtto be relatively safe for satellites.

" When the radiation belts reformed they did not increaseaccording to a long-held theory of particle acceleration. Instead, byusing scientific instruments in Antarctica and on the CLUSTER missionsatellites, we showed that very low frequency radio waves caused theparticle acceleration and intensified the belts.

"This new information will help spacecraft operators and spaceweather forecasters who must predict when satellites and missions aremost at risk from radiation events allowing them to take measures toprotect instruments and systems from damage, and astronauts from risksto their health."

###

Notes:

Wave Acceleration of electrons in the Van Allen radiation Belts by Richard B. Horne1, Richard M. Thorne2, Yuri Y. Shprits2,Nigel P. Meredith1, Sarah A. Glauert1, Andy J. Smith1, Shrikanth G.Kanekal3, Daniel N. Baker3, Mark J. Engebretson4, Jennifer L. Posch4,Maria Spasojevic5, Umran S. Inan5, Jolene S. Pickett6 & PierretteM. E. Decreau7 is published this week in the journal Nature.

1 British Antarctic Survey, Madingley Road, Cambridge CB3 0ET, UK.
2Department of Atmospheric and Oceanic Sciences, University ofCalifornia Los Angeles, 405 Hilgard Avenue, Los Angeles, California90095-1565, USA.
3 Laboratory for Atmospheric and Space Physics, University of Colorado,1234 Innovation Drive, Boulder, Colorado 80303-7814, USA.
4 Department of Physics, Augsburg College, Minneapolis, Minnesota 55454, USA.
5 STAR Laboratory, Stanford University, Stanford, California 94305, USA.
6 Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242-1479, USA.
7 LPCE, 3A, Avenue de la recherche scientifique, 45071, Orleans, Cedex 2, France.

* Van Allen radiation belts

The Van Allen radiation belts were the foremost discovery of the spaceage after being detected by the first US satellite Explorer I, whichwas launched during the International Geophysical Year of 1957-58. Theyare composed of energetic charged particles trapped inside the Earth'smagnetic field, which surrounds the Earth like a ring doughnut. Theyvary according to solar activity. Other planets with magnetic fields,such as Jupiter and Saturn, also have radiation belts. At present it isnot known how the radiation belts at the other planets are formed, butthe wave acceleration theory presented here could apply.

The 'old' theory

Until now it was believed that theelectrons within the belts were accelerated by radial diffusion. Thiscan be explained by thinking of the Earth's magnetic field as elasticbands. If the bands are plucked, they wobble. If they wobble at thesame rate as the particles drifting around the Earth then the particlescan be driven across the magnetic field and accelerated. This processis known as radial diffusion and is driven by solar activity. The newresearch presented here shows that this theory is now inadequate.

Space storms

Antarctica is our 'window on space'.Magnetic space storms damage spacecraft, disrupt power supplies,communications & navigation systems and alter satellite orbits. BASscientists are attempting to predict Space Weather through a betterunderstanding of the complex process that take place when the Earth andSun's magnetic fields meet. BAS scientists use several differenttechnologies to measure variations in the Earth's magnetic field. Datafrom these studies are used in mathematical models to test theoreticalideas. This research makes a major contribution to international globalresearch programmes that involve spacecraft and networks ofground-based scientific instruments.

Whistler mode chorus waves

During magnetic storms verylow frequency radio waves (in the audio range below 20 kHz) aregenerated in space by low energy electrons. The waves can be guidedalong the magnetic field down to the ground in the polar regions. Undersome conditions the waves can accelerate a small number of electrons tovery high energies and trap them in space. These are the particles thatdamage spacecraft. But under other conditions they can drain theradiation belts by dumping energetic particles down into the upperatmosphere and change its chemistry as a result.

British Antarctic Survey is a world leader in research intoglobal issues in an Antarctic context. It is the UK's national operatorand is a component of the Natural Environment Research Council. It hasan annual budget of around£ 40 million, runs eight research programmesand operates five research stations, two Royal Research Ships and fiveaircraft in and around Antarctica. More information about the work ofthe Survey can be found at: www.antarctica.ac.uk


Story Source:

The above story is based on materials provided by British Antarctic Survey. Note: Materials may be edited for content and length.


Cite This Page:

British Antarctic Survey. "Breakthrough Will Help Protect Astronauts And Spacecraft." ScienceDaily. ScienceDaily, 8 September 2005. <www.sciencedaily.com/releases/2005/09/050908081518.htm>.
British Antarctic Survey. (2005, September 8). Breakthrough Will Help Protect Astronauts And Spacecraft. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2005/09/050908081518.htm
British Antarctic Survey. "Breakthrough Will Help Protect Astronauts And Spacecraft." ScienceDaily. www.sciencedaily.com/releases/2005/09/050908081518.htm (accessed July 29, 2014).

Share This




More Space & Time News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
NASA EDGE: OCO-2 Launch

NASA EDGE: OCO-2 Launch

NASA (July 25, 2014) — NASA EDGE webcasts live from Vandenberg AFB for the launch of the Oribiting Carbon Observatory-2 (OCO) launch. Video provided by NASA
Powered by NewsLook.com
This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) — Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) — One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins