Featured Research

from universities, journals, and other organizations

Brain's Inertial Navigation System Pinpointed

Date:
June 21, 2007
Source:
Cell Press
Summary:
Researchers have discovered a sophisticated neural computer, buried deep in the cerebellum, that performs inertial navigation calculations to figure out a person's movement through space.

Researchers have discovered a sophisticated neural computer, buried deep in the cerebellum, that performs inertial navigation calculations to figure out a person's movement through space.

These calculations are no mean feat, emphasized the researchers. The vestibular system in the inner ear provides the primary source of input to the brain about the body's movement and orientation in space. However, the vestibular sensors in the inner ear yield information about head position only. Also, the vestibular system's detection of head acceleration cannot distinguish between the effect of movement and that of gravitational force.

Dora Angelaki and colleagues based their brain studies on the predictions of a theoretical mathematical model postulating that the brain could compute inertial motion by combining rotational signals from the semicircular canal in the inner ear with gravity signals. They concentrated their search for the brain's inertial navigation system on particular types of neurons, called Purkinje cells, in a region of the cerebellum known to receive signals from the vestibular system. This region is known as the posterior cerebellar vermis, a narrow, worm-like structure between the brain's hemispheres.

In their experiments, the researchers measured the electrical activity of these Purkinje cells in monkeys as the animals' heads were maneuvered through a precise series of rotations and accelerations. After analyzing the electrical signals measured from the Purkinje cells during these movements, the researchers concluded that the specialized Purkinje cells were, indeed, computing earth-referenced motion from head-centered vestibular information.

The researchers concluded that the output of the Purkinje cells indicates an "elegant solution" to the computational problems involved in inertial navigation.

The researchers include Tatyana A. Yakusheva, Aasef G. Shaikh, Andrea M. Green, Pablo M. Blazquez, J. David Dickman, and Dora E. Angelaki of Washington University School of Medicine in St. Louis, MO.

The work was supported by grants from NASA (NNA04CC77G) and NIH (F32 DC006540, R01 EY12814).

Reference: Yakusheva et al.: "Purkinje Cells in Posterior Cerebellar Vermis Encode Motion in an Inertial Reference Frame." Neuron 54, 973--985, June 21, 2007. DOI 10.1016/j.neuron.2007.06.003.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Brain's Inertial Navigation System Pinpointed." ScienceDaily. ScienceDaily, 21 June 2007. <www.sciencedaily.com/releases/2007/06/070620122014.htm>.
Cell Press. (2007, June 21). Brain's Inertial Navigation System Pinpointed. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2007/06/070620122014.htm
Cell Press. "Brain's Inertial Navigation System Pinpointed." ScienceDaily. www.sciencedaily.com/releases/2007/06/070620122014.htm (accessed July 31, 2014).

Share This




More Mind & Brain News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dieting At A Young Age Might Lead To Harmful Health Habits

Dieting At A Young Age Might Lead To Harmful Health Habits

Newsy (July 30, 2014) — Researchers say women who diet at a young age are at greater risk of developing harmful health habits, including eating disorders and alcohol abuse. Video provided by Newsy
Powered by NewsLook.com
It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) — If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) — Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) — A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins