Featured Research

from universities, journals, and other organizations

Putting An End To Turbulence

December 1, 2008
Whether in oil pipelines or city water mains -- scientists have discovered that turbulent flow is not stable.

A turbulent eddy flowing through a thin glass pipe. The flow is laminar in front of and behind the eddy.
Credit: MPIDS

When a flow reaches a certain speed, things get turbulent: The fluid or the gas no longer flows in an orderly fashion but whirls around wildly. However, in contrast to what researchers assumed until now, this state is not permanent.

Scientists from the Max Planck Institute for Dynamics and Self-Organization in Göttingen, Germany, and the Technical University in Delft, Netherlands, have shown that in pipe flows, all turbulence will disappear with time. The new measurements are significantly more precise than all previous experiments and computer simulations concerned with this question.

Turbulent flows in pipes are of importance for many every-day applications. What they all have in common is their appearance: They travel down the pipe bubbling and gurgling like a mountain stream. The flow only calms down when its speed is reduced. Scientists call this calmer state laminar. Crucial for the difference between laminar and turbulent flow are the inner forces that link the water molecule to each other. Only if the influence of these inner forces is smaller than the influence of the forces that accelerate the flow can turbulence appear.

Until now, scientists assumed that a turbulent flow travelling with a constant speed will always remain turbulent. However, scientists from Göttingen and Delft have now found evidence that points to the contrary. "Our measurements show that every turbulent flow in a pipe will inevitably become laminar", says Dr. Björn Hof from the Max Planck Institute for Dynamics and Self-Organization. Depending on the exact geometry of the pipe this transition may take many years. But just like a ball inside a hollow, that always rolls back into the equilibrium position, only the laminar flow is stable.

For their measurements the scientists let water flow through glass pipes of up to 14 meters length and only a few millimetres in diameter. With the help of a short water pulse from the side they created a turbulent eddy in the otherwise perfectly laminar flow. They then monitored closely, how this eddy changed as it travelled down the pipe. From the probability with which it reached the end of the pipe they could derive the basic principles that govern turbulence.

"In order to discern whether turbulence is stable or only has an extremely long lifetime, our measurements had to be very exact", says Hof. For example, it was crucial to keep the temperature of the water absolutely constant during the experiment. The measuring accuracy which the scientists achieved in this way exceeded all previous experiments. Even computer simulations cannot provide such precise data.

It is still unclear whether the new results also hold true for flows outside of pipes. But even now the results could help in ending turbulence in pipes in a controlled way. "Turbulent flow consumes more energy than do laminar ones. In many applications such as oil pipelines they are therefore bothersome", explains Hof. Since the flows aspire to turn laminar on their own, it could be possible to shorten the long lifetime of the turbulence with the help of a small perturbation. This could help save energy.

Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.

Journal Reference:

  1. Hof et al. Repeller or Attractor? Selecting the Dynamical Model for the Onset of Turbulence in Pipe Flow. Physical Review Letters, Nov 21, 2008; 101 (21): 214501 DOI: 10.1103/PhysRevLett.101.214501

Cite This Page:

Max-Planck-Gesellschaft. "Putting An End To Turbulence." ScienceDaily. ScienceDaily, 1 December 2008. <www.sciencedaily.com/releases/2008/11/081121101003.htm>.
Max-Planck-Gesellschaft. (2008, December 1). Putting An End To Turbulence. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/11/081121101003.htm
Max-Planck-Gesellschaft. "Putting An End To Turbulence." ScienceDaily. www.sciencedaily.com/releases/2008/11/081121101003.htm (accessed July 31, 2014).

Share This

More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News


      Free Subscriptions

      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile

      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?

      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins