Featured Research

from universities, journals, and other organizations

Insight Into 'Dancing' Atoms: To Make Better MRI Images, Let The Atoms Spin Out Of Control

Date:
November 28, 2008
Source:
Ohio State University
Summary:
Scientists have made a new theoretical advance in atomic behavior that could lead to sharper magnetic resonance imaging pictures. The discovery could one day help enable the development of portable MRI machines.

Scientists in the U.S. and France have explained some strange atomic behavior, and made a discovery that could ultimately make MRI images sharper. This graphic depicts the quantum mechanical principal of super-adiabaticity, which was responsible for the behavior of atoms in some nuclear magnetic resonance experiments. If the trajectory of the atoms during an experiment were mapped on a globe, then the purpose of an adiabatic experiment is to move the atoms being studied from one point on the globe to another -- slowly, and following a very carefully designed path (gray line). With super-adiabaticity, the atoms follow a different -- sometimes, wildly different -- path (orange line), but still end up at the right destination.
Credit: Image courtesy of Philip Grandinetti, Ohio State University

Scientists have made a new theoretical advance in atomic behavior that could lead to sharper magnetic resonance imaging (MRI) pictures. The discovery could one day help enable the development of portable MRI machines.

Related Articles


In the November 25 online issue of the Journal of Chemical Physics, they explain why scientists couldn't completely control the behavior of atomic nuclei during some nuclear magnetic resonance (NMR) experiments.

Some loss of control isn’t such a bad thing, explained Philip Grandinetti, professor of chemistry at Ohio State University. Now that he and his colleagues have derived a mathematical explanation of the strange atomic behavior, scientists can use it to make MRI images sharper.

The advance may one day help scientists to look inside people and objects without having to put them inside giant magnets -- an advance which could lead to portable MRIs.

NMR and its medical counterpart, MRI, reveal the inside of objects by detecting atoms that behave like tiny magnets. Inside the machine's strong magnetic field, atoms align according to north and south magnetic poles, spinning and precessing like tiny tops. Each type of atom broadcasts its identity by emitting a unique radio frequency, depending on its environment.

NMR can reveal the structure of individual molecules. But pictures of complex objects -- such as the human brain -- often lack detail, because whenever atoms happen to broadcast in opposite directions, they cancel each other out of the final image.

In a quest to boost NMR resolution, scientists routinely perform a certain type of experiment that keeps the spins of atoms under very strict control. They refer to such experiments as adiabatic.

The Ohio State scientist and his collaborators found that atoms in adiabatic experiments don't always behave as scientists intend them to.

They didn't set out to make such a fundamental discovery, Grandinetti explained. They'd only wanted to examine an earlier University of Alberta experiment which had been aimed at enhancing NMR signal strength.

"We originally wanted to work out a rigorous theoretical description of the Alberta experiment, but the more we tried to understand even the simplest adiabatic process in magnetic resonance, the more we realized that there was a disturbing discrepancy between theory and experiment," he said.

They uncovered the same contradiction in many other studies over decades of NMR research. Even though all these experiments seemed to run properly and yield good results, the atoms hadn't spun in a controlled way.

There was only the barest mention of the effect in the scientific literature over the years, and nobody had bothered to find the cause.

"To be fair, though, it wasn’t clear that this discrepancy posed a real problem, and most people thought the conventional theoretical approach was doing a fine job," he added. "It was only after we fully understood the reason for the discrepancy that we realized the conventional theoretical approach contained a flaw that might prevent better adiabatic processes from being discovered."

The scientists discovered that atoms were not spinning out of control, but rather were moving in a predictable way, according to a quantum mechanical concept called super-adiabaticity. The concept was first proposed in the late 1980s.

A super-adiabatic process is still adiabatic. That's why all those seemingly contradictory experiments ran properly -- the atoms were behaving in an adiabatic way, just not according to the commonly accepted adiabatic theory.

The idea is based on some very complex mathematics, but it can be visualized in three dimensions. If the trajectory of the atoms during an experiment were mapped on a globe, then the purpose of an adiabatic experiment is to move the atoms being studied from one point on the globe to another -- slowly, and following a very carefully designed path.

With super-adiabaticity, the atoms follow a different -- sometimes, wildly different -- path, but still end up at the right destination.

It's as if an airplane was scheduled to fly in a straight line from the North Pole to the South Pole, but instead veered way off course, spiraling southward until it eventually reached the other pole. The route was circuitous, but the end result was the same.

In the case of the NMR experiments, super-adiabaticity re-routed the atoms' flight plan.

Grandinetti hopes to incorporate the algorithm into software for controlling NMR and MRI measurements, where it might boost image resolution. One day, it might even help these instruments obtain signals from objects located outside of a magnet.

Scientists could also use super-adiabaticity to exert better control over atoms for quantum computing, and to make more precise structural studies of complex biological molecules, he said.

Collaborators on this research hailed from the Centre National de la Recherche Scientifique, the Université d'Orléans, and the Université de Lyon, France.

This research was funded by the National Science Foundation and the CNRS and Le Studium in France.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael Deschamps et al. Superadiabaticity in Magnetic Resonance. Journal of Chemical Physics, Volume 129, issue 20; Online November 25, 2008

Cite This Page:

Ohio State University. "Insight Into 'Dancing' Atoms: To Make Better MRI Images, Let The Atoms Spin Out Of Control." ScienceDaily. ScienceDaily, 28 November 2008. <www.sciencedaily.com/releases/2008/11/081125121234.htm>.
Ohio State University. (2008, November 28). Insight Into 'Dancing' Atoms: To Make Better MRI Images, Let The Atoms Spin Out Of Control. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2008/11/081125121234.htm
Ohio State University. "Insight Into 'Dancing' Atoms: To Make Better MRI Images, Let The Atoms Spin Out Of Control." ScienceDaily. www.sciencedaily.com/releases/2008/11/081125121234.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins