Featured Research

from universities, journals, and other organizations

Signs Of Ideal Surfing Conditions Spotted In Ocean Of Solar Wind

Date:
September 1, 2009
Source:
University of Warwick
Summary:
Researchers have found what could be the signal of ideal wave "surfing" conditions for individual particles within the massive turbulent ocean of the solar wind. The discovery could give a new insight into just how energy is dissipated in solar system sized plasmas such as the solar wind and could provide significant clues to scientists developing fusion power which relies on plasmas.

Earth's magnetic shield, or magnetosphere, protects us from most effects of solar storms and the solar wind.
Credit: SOHO image composite by Steele Hill (NASA)

Researchers at the University of Warwick have found what could be the signal of ideal wave “surfing” conditions for individual particles within the massive turbulent ocean of the solar wind. The discovery could give a new insight into just how energy is dissipated in solar system sized plasmas such as the solar wind and could provide significant clues to scientists developing fusion power which relies on plasmas.

The research, led by Khurom Kiyanai and Professor Sandra Chapman in the University of Warwick’s Centre for Fusion, Space and Astrophysics, looked at data from the Cluster spacecraft quartet to obtain a comparatively “quiet” slice of the solar wind as it progressed over an hour travelling covering roughly 2,340,000 Kilometres.

In space, on these large scales, and quiet conditions, nature provides an almost perfect experiment to study turbulence which could not be done on Earth in a laboratory. This plasma energy does eventually dissipate. One obvious way of understanding how such energetic plasma could dissipate this energy would be if the particles within the plasma collided with each other. However the solar wind is an example of a “Collisionless Plasma”. The individual particles within that flow are still separated by massive distances so cannot directly interact with each other. They typically collide only once or twice with anything on their journey from the Sun to the Earth.

The University of Warwick Centre for Fusion, Space and Astrophysics led team drilled down into the data on this 2,340,000 Kilometres zooming down to see how the turbulence works on these different length scales which might provide some clue as to how the plasma was able to dissipate energy.

When the researchers were able to make observations all the way down to about I kilometre they could resolve the behaviour of individual particles within the total 2,340,000 kilometres slice of solar wind. These regions, which held just one particle of the plasma, were themselves almost a kilometre in size. The researchers were surprised to see a new kind of turbulence on these small scales.

At this particular scale they saw that the levels of turbulence switched from being multifractal to single fractal pattern. This single fractal pattern turbulence appears just right to create and sustain waves that can interact with the individual particles in the solar wind. University of Warwick astrophysicist Khurom Kiyani said: “The particles in this “collisionless plasma” may too spread out to collide with each other but this could indicate that they can, and do, interact with waves and surfing these ideal waves is what allows them to dissipate their energy.”

University of Warwick astrophysicist Professor Sandra Chapman said “We have been able to drill down through a vast ocean of data covering well over two million kilometres to get an insight in to what is happening in an area about the size of a beach, and on all length scales in between. We believe we are seeing waves on that beach that are providing the ideal surfing conditions to allow plasma particles to exchange energy without collisions.”

Professor Sandra Chapman also said “These results are not just an interesting piece of astrophysics as the work has been led by a ‘Centre for Fusion, Space and Astrophysics’ the results have also immediately come to the attention of our colleagues working to increase the stability of plasmas involved in the generation of fusion energy. Turbulence is a big problem in keeping the hot plasma confined long enough for burning to take place to generate fusion power.“

The research entitled Global Scale-Invariant Dissipation in Collisionless Plasma Turbulence has just been published in Physical Review Letters and was conducted by Khurom Kiyani, and Professor Sandra Chapman of the University of Warwick in the UK; Yu.V. Khotyaintsev of Swedish Institute of Space Physics, Uppsala, Sweden; M.W. Dunlop, Rutherford Appleton Laboratory, United Kingdom; and F. Sahraoui of 4NASA Goddard Space Flight Center US and the Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique, France.


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. H. Kiyani, S. C. Chapman, Yu. V. Khotyaintsev, M. W. Dunlop, and F. Sahraoui,. Global Scale-Invariant Dissipation in Collisionless Plasma Turbulence. Phys. Rev. Lett., 2009; 103: 075006 DOI: 10.1103/PhysRevLett.103.075006

Cite This Page:

University of Warwick. "Signs Of Ideal Surfing Conditions Spotted In Ocean Of Solar Wind." ScienceDaily. ScienceDaily, 1 September 2009. <www.sciencedaily.com/releases/2009/08/090831130658.htm>.
University of Warwick. (2009, September 1). Signs Of Ideal Surfing Conditions Spotted In Ocean Of Solar Wind. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2009/08/090831130658.htm
University of Warwick. "Signs Of Ideal Surfing Conditions Spotted In Ocean Of Solar Wind." ScienceDaily. www.sciencedaily.com/releases/2009/08/090831130658.htm (accessed September 20, 2014).

Share This



More Matter & Energy News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins