Featured Research

from universities, journals, and other organizations

Visual assistance for cosmic blind spots

Date:
November 24, 2009
Source:
Max-Planck-Gesellschaft
Summary:
Information field theory enables astronomers, medical practitioners and geologists to look into places where their measuring instruments are blind.

A complete picture of the galaxy despite incomplete data: The measurement does not cover all points (dark areas in the left-hand image) but the distribution of matter in a section of the universe can be partially reconstructed using the Wiener filter (right-hand image).
Credit: Max Planck Institute for Astrophysics / Kitaura

A bit of imagination on the part of a measuring instrument wouldn’t be a bad thing. It could help to add data from areas where the instrument is unable to measure. However, it must do so constructively. In order to infer missing data in an astronomical measurement with more than just imagination, physicists at the Max Planck Institute for Astrophysics have formulated a theory of spatial perception called information field theory. The scientists have developed a series of rules for reconstituting incomplete and noisy image data. Furthermore, they have established the various conditions under which the rules should be applied. They draw on a mathematical algorithm that particle physicists use in quantum field theory. The theory could also help to create images in the areas of medicine, geology and materials sciences.

Sometimes we hear or see what we think makes sense: we can recognise a cup even if we only see a single detail. And we understand someone mumbling on the phone more clearly if we are already familiar with their voice. It’s the expectation of a sensory impression that makes life easier for magicians, too, when they make a ball disappear by throwing it up in the air: our eyes follow the ball that we think should be flying through the air, but the conjurer only pretended to throw the ball and actually hid it instead.

A measuring instrument should be safe from such illusions - on the one hand. But on the other hand, it would certainly be helpful if scientists could add data in places where it cannot be measured: for instance, when they want to take a picture of the universe behind the Milky Way, which telescopes are unable to penetrate. To enable them to draw conclusions about astronomical blind spots, Torsten Enlin and his team at the Max Planck Institute for Astrophysics in Garching have developed a clever system, which they call information field theory (IFT).

"We add the missing data on the basis of the existing measuring points around the edge of the blind spot," says Torsten Enlin, who heads a research group at the Garching-based Institute on the cosmic microwave background, the relic radiation from the Big Bang: "These conclusions are more or less uncertain, of course." Yet adding data in a way that appears to make sense is not enough to avoid reaching a wrong conclusion: "Our theory also calculates precisely how uncertain the statements are," says Enlin. Using this method, the scientists partially completed measurements of the cosmic microwave background, a radiation echo of the Big Bang, behind the Milky Way, where even the most clear-sighted telescope is blind.

IFT is based on the responses to two questions, which the system must answer for each unknown point. If the researchers want to reconstruct the microwave background on the basis of measuring data, for example, they first ask: How probable are the measured data? Then they ask: How probable are our assumptions on the microwave background? These two probabilities determine how plausible the respective images of the microwave background are in light of the data and prior knowledge. An optimal reconstruction lies in the middle of the probable images.


The relationship between the signal sensitivity and the noise of the measuring instrument plays a decisive role in answering the first question. The noise disturbs the measurement, and at worst a physical measuring signal can get lost in the noise - like the static that distorts an analogue radio transmission with poor reception.

"The answer to the second question comes from the previous question; in other words, my expectation of a signal resulting from my prior knowledge," explains Torsten Enlin. The signal corresponds to the reality of the data that the measuring instrument may only be able to reproduce with distortion. Correctly applying the expectation of a signal is a tricky business. "If I really want to see something, I choose a strong prior - but then I’m blind to everything else," says Enlin. Up to now, scientists often constructed their expectations of measuring data more or less randomly and equally randomly decided how strongly they should be incorporated into a data point. Information theory, on the other hand, precisely regulates how expectations should be formulated and also what weighting they should carry. "What’s new about our theory is that we can apply information theory to spatially distributed parameters - we call them fields - when we broaden them for the purposes of information field theory," says Enlin.

There is already a rule for supplementing incomplete spatially distributed data: the Wiener filter. Torsten Enlin compares another scenario to explain how it works: "If you can see a lot of trees, you’re probably standing in a forest," he says: "Even if your sight is impaired, you can conclude that there is another tree standing next to all the trees you can see." The Wiener filter applies only under a number of conditions: the noise of the instrument must be independent of the signal’s strength, and the measuring instrument’s response to the signal must increase in a linear fashion, in other words, evenly in line with the increase in strength. And finally, the noise and the signal must follow Gaussian statistics, which are easy to apply mathematically. Information field theory incorporates the Wiener filter - as a simple special case.

Often, at least one of these conditions is not met. "But because there was no theory for this case, physicists also applied the Wiener filter when they really shouldn’t have," says Torsten Enlin. He and his colleagues have now created this theory. They formulated a description of how to proceed in individual cases in the form of Feynman diagrams - schematic drawings consisting of dots, lines and circles, which, if you know how to read them, reveal what mathematical operations need to be carried out.

The physicist Richard Feynman developed this schematic code to record the goings-on in the world of the tiniest elements - such as what happens when two electrodes collide. Feynman thereby put his quantum field theory, which described such processes, into practice more or less clearly. And this was the inspiration behind information field theory. "At some point I had the feeling that I had to refresh my knowledge of quantum field theory," says Torsten Enlin. So he waded through a textbook on the subject and came across a footnote explaining how human visual perception can be described as statistical field theory. "This gave me the idea to formulate information field theory, because we have measuring problems especially when researching cosmic microwave radiation and the distribution of matter in the universe. These can be very well described by statistical field theories," he says. "Someone could have come up with the idea earlier, but quantum physicists do not usually concern themselves with signal recognition and electrical engineers do not read books about quantum field theory".

Since Torsten Enlin’s work as a physicist was concerned with signal recognition, he developed a mathematical algorithm that can be of great help to many - and not only to astrophysicists. Medical practitioners would, in numerous cases, be able to make more precise diagnoses if the imaging procedures took a less limited perspective. And IFT could also help geologists locate mineral resources where measurements provide an incomplete picture.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Torsten A. Ensslin, Mona Frommert, Francisco S. Kitaura. Information field theory for cosmological perturbation reconstruction and non-linear signal analysis. Physical Review D, Online publication, November 9, 2009

Cite This Page:

Max-Planck-Gesellschaft. "Visual assistance for cosmic blind spots." ScienceDaily. ScienceDaily, 24 November 2009. <www.sciencedaily.com/releases/2009/11/091123114632.htm>.
Max-Planck-Gesellschaft. (2009, November 24). Visual assistance for cosmic blind spots. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2009/11/091123114632.htm
Max-Planck-Gesellschaft. "Visual assistance for cosmic blind spots." ScienceDaily. www.sciencedaily.com/releases/2009/11/091123114632.htm (accessed April 17, 2014).

Share This



More Computers & Math News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

TheStreet (Apr. 16, 2014) The social media data space is likely to see more mergers and acquisitions following Twitter Inc.'s acquisition of tweet analyzer Gnip Inc. on Tuesday and Apples Inc.'s purchase of Topsy Labs Inc. back in December. One firm in particular, the U.K.'s DataSift Inc., could be on the list of potential buyers. Among other social media startups that could be ripe for picking is Banjo, whose mobile app provides aggregated content by topic and location. Banjo could also be a good fit for Twitter. Video provided by TheStreet
Powered by NewsLook.com
Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

TheStreet (Apr. 16, 2014) Bitcoin exchange Mt. Gox has agreed to liquidate after a Japanese court rejected its plans to rebuild, according to a report by the Wall Street Journal. Mt. Gox filed for bankruptcy protection in February after announcing about 850,000 bitcoins, worth around $454 million at today's rates, may have been stolen by hackers. It has since recovered 200,000 of the missing bitcoins. The court put Mt. Gox's assets under a provisional administrator's control until bankruptcy proceedings begin. Video provided by TheStreet
Powered by NewsLook.com
BlackBerry: The Crash That Launched 1,000 Startups

BlackBerry: The Crash That Launched 1,000 Startups

Reuters - Business Video Online (Apr. 16, 2014) Tech startups in BlackBerry's hometown of Waterloo, Ontario, are tapping talent from the struggling smartphone company and filling the void left in the region by its meltdown. Reuters correspondent Euan Rocha visits the region that could become Canada's Silicon Valley. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins