New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Holographic Universe

The holographic principle is a property of quantum gravity theories which resolves the black hole information paradox within string theory. First proposed by Gerard 't Hooft, it was given a precise string-theory interpretation by Leonard Susskind.

The principle states that the description of a volume of space should be thought of as encoded on a boundary to the region, preferably a light-like boundary like a gravitational horizon. For a black hole, the principle states that the description of all the objects which will ever fall in is entirely contained in surface fluctuations of the event horizon.

In a larger and more speculative sense, the theory suggests that the entire universe can be seen as a two-dimensional information structure "painted" on the cosmological horizon, so that the three dimensions we observe are only an effective description at low energies. Cosmological holography has not yet been made mathematically precise, partly because the cosmological horizon has a finite area and grows with time.

It has been claimed, on general physical principles, that the holographic principle may manifest itself in the form of background noise in gravitational wave detectors such as the GEO 600.

Related Stories
 


Space & Time News

December 28, 2025

Scientists are digging into the hidden makeup of carbon-rich asteroids to see whether they could one day fuel space exploration—or even be mined for valuable resources. By analyzing rare meteorites ...
Astronomers have uncovered a massive hidden planet and a rare “failed star” by combining ultra-precise space data with some of the sharpest ground-based images ever taken. Using the Subaru Telescope in Hawaiʻi, the OASIS survey tracked subtle ...
Gravitational waves from black holes may soon reveal where dark matter is hiding. A new model shows how dark matter surrounding massive black holes leaves detectable fingerprints in the waves recorded by future space ...
Researchers have shown that quantum signals can be sent from Earth up to satellites, not just down from space as previously believed. This breakthrough could make global quantum networks far more powerful, affordable, and ...
SQUIRE aims to detect exotic spin-dependent interactions using quantum sensors deployed in space, where speed and environmental conditions vastly improve sensitivity. Orbiting sensors tap into ...
Earth’s orbit is getting crowded with broken satellites and leftover rocket parts. Researchers say the solution is to build spacecraft that can be repaired, reused, or recycled instead of abandoned. They also want new tools to collect old debris ...
A UC Irvine team uncovered a never-before-seen quantum phase formed when electrons and holes pair up and spin in unison, creating a glowing, liquid-like state of matter. By blasting a custom-made material with enormous magnetic fields, the ...
A massive solar storm in May 2024 gave scientists an unprecedented look at how Earth’s protective plasma layer collapses under intense space weather. With the Arase satellite in a perfect observing position, researchers watched the plasmasphere ...
New observations show that asteroid 1998 KY26 is a mere 11 meters across and spinning twice as fast as previously thought. The discovery adds complexity to Hayabusa2’s 2031 mission but also heightens scientific interest. The asteroid’s ...
Scientists built a tiny clock from single-electron jumps to probe the true energy cost of quantum timekeeping. They discovered that reading the clock’s output requires vastly more energy than the clock uses to function. This measurement process ...
Researchers combined deep learning with high-resolution physics to create the first Milky Way model that tracks over 100 billion stars individually. Their AI learned how gas behaves after supernovae, removing one of the biggest computational ...
Dark matter may be invisible, but scientists are getting closer to understanding whether it follows the same rules as everything we can see. By comparing how galaxies move through cosmic gravity wells to the depth of those wells, researchers found ...

Latest Headlines

updated 12:56 pm ET