Featured Research

from universities, journals, and other organizations

A launchpad for stem cell research

June 8, 2010
American Friends of Tel Aviv University
Scientists have identified a special class of stem cells called "rosette-stage NSCs," which he is using to develop a tool to control the growth and development of these cells in the human body. With this tool, they say, researchers around the world will be better able to understand the progression of nervous system disorders, discover new drugs and replace defective cells.

Neural stem cells organize radially towards a center to form a rosette.
Credit: AFTAU

Stem cell research holds promise for improving the quality of human life ― especially embryonic stem cells, which can potentially develop into any tissue in the human body. However, basic scientific problems still remain unresolved -- but Tel Aviv University researchers are leading the way to inventive solutions.

Related Articles

"In order to use embryonic stem cells as a reliable and safe therapeutic tool, we have to find strategies to control their differentiation so we get exactly the type of cells we desire," says Dr. Yechiel Elkabetz of Tel Aviv University's Department of Cell and Developmental Biology, Sackler Faculty of Medicine. To do that, Dr. Elkabetz is building tools based on genetic engineering of human embryonic stem cells, which will enable his research group to mark, isolate and track the growth of the very early nervous system stem cells (or neural stem cells) he recently identified.

His current research is based on a series of articles he published in Genes & Development and Nature Biotechnology, while still at Sloan-Kettering Institute in the U.S.

Ideally, researchers would like to grow stem cells in order to replace those that are missing in patients, such as motor neurons in the spinal cord of victims of ALS, or dopamine neurons in the brains of Parkinson's disease sufferers. But because our understanding of how embryonic stem cells evolve in the Petri dish is only beginning to become clear, such cells may often "take on a life of their own" in the laboratory -- turning into tumors or cells they weren't expected to become.

Avoiding cellular "Jekylls and Hydes"

"We need to create a common platform -- or language -- of neural stem cells that researchers around the world can use," says Dr. Elkabetz. "Our new approach could set the stage for generating better defined neural stem cells, minimizing risks, and giving scientists the ultimate tool for developing new hypotheses and experiments."

While numerous kinds of neural stem cells potentially exist, Dr. Elkabetz has identified a specific neural stem cell type with the capacity to generate a broad range of nervous system cell types in response to appropriate developmental signals he defines.

The cells he identified ― called rosette-stage NSCs (R-NSCs) ― are different from other neural stem cells in the way they look, express genes, and in their special needs for growth. Based on his initial investigation and preliminary results, Dr. Elkabetz has been able to track their behavior, development and gene expression. With this information, he is now developing tools to cultivate a range of optimal neural stem cells that can be instructed to become exactly what he wants them to, eliminating the risk of the "wild" runaway stem cells that can cause undesired effects.

A standard for the world

Dr. Elkabetz's research has allowed him to begin creating a protocol which may result in "freezing" the natural development of these cells for the first time ever, subsequently making them reproduce or self-propagate in large numbers, he says. This should allow the cells to develop into much more specific neural cell types, which in turn can be used to better understand the progression of nervous system disorders, discover new drugs, and replace defective cells in the brains of Parkinson's patients.

The implications of this research can provide the basis for a new kind of research tool, one that biologists around the world could use to define and grow the specific kinds of neural stem cells they require. Dr. Elkabetz hopes that it will become an international standard against which scientists can test new hypotheses and compare findings.

Story Source:

The above story is based on materials provided by American Friends of Tel Aviv University. Note: Materials may be edited for content and length.

Cite This Page:

American Friends of Tel Aviv University. "A launchpad for stem cell research." ScienceDaily. ScienceDaily, 8 June 2010. <www.sciencedaily.com/releases/2010/06/100608135110.htm>.
American Friends of Tel Aviv University. (2010, June 8). A launchpad for stem cell research. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2010/06/100608135110.htm
American Friends of Tel Aviv University. "A launchpad for stem cell research." ScienceDaily. www.sciencedaily.com/releases/2010/06/100608135110.htm (accessed March 31, 2015).

Share This

More From ScienceDaily

More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins