Featured Research

from universities, journals, and other organizations

Recalculating cell sensing

Date:
June 14, 2010
Source:
American Physical Society
Summary:
New calculations reveal that cells that find their way by following chemical signals may be twice as sensitive as previous estimates suggested.

Mobile biological cells may be twice as good at following chemical signals as previously believed possible, according to Princeton researchers publishing in the latest issue of Physical Review Letters. The revelation offers new insight into the ability of microscopic, single-celled entities such as bacteria, amoebae, immune cells and sperm to find their way to their intended destinations.

Related Articles


Biological sensors, including the retina in our eyes, typically evolve to operate very nearly at the ultimate limits allowed by physics. The main things that prevent them from achieving absolute perfection are random fluctuations known as noise. Determining the amount of noise inherent to a cell's detection scheme lets biologists know how well a cell can respond to a signal. In the case of microscopic cells and creatures that follow chemical trails, organisms have two tracking methods at their disposal. For larger microorganisms like amoeba, the relative amount of a chemical on one side of the cell compared to the other side indicates which direction to travel in order to move to higher concentrations of desirable chemicals. Smaller cells, like those of the bacterium E. coli, instead monitor changes in the total chemical concentration, and they find their way by moving in the direction that increases the overall signal of chemicals they find appealing.

For the last thirty years, researchers have believed they had a good handle on the noise that chemical-sensing cells were faced with, but the new analysis shows that the noise may be low enough for some cells to do twice as well at following chemicals as long-standing estimates suggested. More research will be necessary in order to tell if cells are as sensitive to chemical signals as the recent study proposes. In any case, the work should help guide scientists who are developing synthetic sensors modeled on cells that follow chemical trails. Sima Setayeshgar of Indiana University offers an overview of chemical sensing in cells, and a look at old and new estimates of their sensitivity limits, in a Viewpoint article in the current issue of APS Physics.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Journal References:

  1. Thierry Mora and Ned S. Wingreen. Limits of Sensing Temporal Concentration Changes by Single Cells. Phys. Rev. Lett., 104, 248101 (2010) DOI: 10.1103/PhysRevLett.104.248101
  2. Sima Setayeshgar. Improving accuracy by leaps and unbounds. APS Physics, June 14, 2010 DOI: 10.1103/Physics.3.49

Cite This Page:

American Physical Society. "Recalculating cell sensing." ScienceDaily. ScienceDaily, 14 June 2010. <www.sciencedaily.com/releases/2010/06/100614114530.htm>.
American Physical Society. (2010, June 14). Recalculating cell sensing. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/2010/06/100614114530.htm
American Physical Society. "Recalculating cell sensing." ScienceDaily. www.sciencedaily.com/releases/2010/06/100614114530.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Doctor Says Head Transplants Possible Within Two Years

Doctor Says Head Transplants Possible Within Two Years

Buzz60 (Feb. 27, 2015) An Italian doctor is saying he could stick someone&apos;s head onto someone else&apos;s body. Patrick Jones (@Patrick_E_Jones) reports. Video provided by Buzz60
Powered by NewsLook.com
How Your Dentist Could Help Screen You For Diabetes

How Your Dentist Could Help Screen You For Diabetes

Newsy (Feb. 27, 2015) A new study from researchers at New York University suggests dentists could soon use blood samples taken from patients&apos; mouths to test for diabetes. Video provided by Newsy
Powered by NewsLook.com
The Best Tips to Makeover Your Health

The Best Tips to Makeover Your Health

Buzz60 (Feb. 27, 2015) If you&apos;re looking to boost your health this season, there are a few quick and easy steps to prompt you for success. Krystin Goodwin (@Krystingoodwin) has the best tips to give your health a makeover this spring! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins