Featured Research

from universities, journals, and other organizations

Recalculating cell sensing

Date:
June 14, 2010
Source:
American Physical Society
Summary:
New calculations reveal that cells that find their way by following chemical signals may be twice as sensitive as previous estimates suggested.

Mobile biological cells may be twice as good at following chemical signals as previously believed possible, according to Princeton researchers publishing in the latest issue of Physical Review Letters. The revelation offers new insight into the ability of microscopic, single-celled entities such as bacteria, amoebae, immune cells and sperm to find their way to their intended destinations.

Related Articles


Biological sensors, including the retina in our eyes, typically evolve to operate very nearly at the ultimate limits allowed by physics. The main things that prevent them from achieving absolute perfection are random fluctuations known as noise. Determining the amount of noise inherent to a cell's detection scheme lets biologists know how well a cell can respond to a signal. In the case of microscopic cells and creatures that follow chemical trails, organisms have two tracking methods at their disposal. For larger microorganisms like amoeba, the relative amount of a chemical on one side of the cell compared to the other side indicates which direction to travel in order to move to higher concentrations of desirable chemicals. Smaller cells, like those of the bacterium E. coli, instead monitor changes in the total chemical concentration, and they find their way by moving in the direction that increases the overall signal of chemicals they find appealing.

For the last thirty years, researchers have believed they had a good handle on the noise that chemical-sensing cells were faced with, but the new analysis shows that the noise may be low enough for some cells to do twice as well at following chemicals as long-standing estimates suggested. More research will be necessary in order to tell if cells are as sensitive to chemical signals as the recent study proposes. In any case, the work should help guide scientists who are developing synthetic sensors modeled on cells that follow chemical trails. Sima Setayeshgar of Indiana University offers an overview of chemical sensing in cells, and a look at old and new estimates of their sensitivity limits, in a Viewpoint article in the current issue of APS Physics.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Journal References:

  1. Thierry Mora and Ned S. Wingreen. Limits of Sensing Temporal Concentration Changes by Single Cells. Phys. Rev. Lett., 104, 248101 (2010) DOI: 10.1103/PhysRevLett.104.248101
  2. Sima Setayeshgar. Improving accuracy by leaps and unbounds. APS Physics, June 14, 2010 DOI: 10.1103/Physics.3.49

Cite This Page:

American Physical Society. "Recalculating cell sensing." ScienceDaily. ScienceDaily, 14 June 2010. <www.sciencedaily.com/releases/2010/06/100614114530.htm>.
American Physical Society. (2010, June 14). Recalculating cell sensing. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2010/06/100614114530.htm
American Physical Society. "Recalculating cell sensing." ScienceDaily. www.sciencedaily.com/releases/2010/06/100614114530.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins