Featured Research

from universities, journals, and other organizations

Mathematical models for breast cancer detection with microwave tomography are cheaper and less risky, research finds

Date:
July 12, 2010
Source:
Society for Industrial and Applied Mathematics
Summary:
The most popular method of breast cancer detection today is X-ray mammography, which takes images of a compressed breast by low-dose ionizing radiation. However, there are several disadvantages to using X-rays for breast cancer screening, chief among them being the invasiveness of radiation and the high costs. Microwave tomography can provide a cheaper and less risky alternative to X-ray mammography, according to new research.

The most popular method of breast cancer detection today is X-ray mammography, which takes images of a compressed breast by low-dose ionizing radiation. However, there are several disadvantages to using X-rays for breast cancer screening, chief among them being the invasivity of radiation and the high costs, which limit their wide use and can deter women from getting them. In addition, depending on the age of the patient and tissue density, X-ray mammograms often result in false positives and negatives.

Microwave tomography can provide a cheaper and less risky alternative to X-ray mammography. In a paper published in the SIAM Journal on Applied Mathematics, the authors describe a mathematical model for imaging tumors in the breast using microwave tomography. Microwave tomography detects cancers by measuring inhomogeneities in the electrical conductivity of breast tissue. An array of low-power microwaves are transmitted into the breast from different positions and the resulting scattered signals are collected by antennas surrounding it. The malignant-to-normal tissue contrast arises because cancerous cells have higher water content, and are hence stronger scatterers than normal tissue.

The electrical properties measured by microwaves are sensitive to physiological parameters such as water content, temperature and vascularization. In addition, they can give an estimate of mammographic breast density, which is a crucial factor in evaluating a patient's risk of breast cancer. The distribution of these electrical parameters in space is used to reconstruct the image of the breast with the help of carefully designed algorithms.

There is room for improvement in the mathematical method that currently exists for image reconstruction in microwave tomography. The problem to be solved is an inverse scattering problem. At microwave frequencies, the inverse problem is difficult to solve accurately because it is highly nonlinear. In addition, it is an ill-posed problem, which means that it does not have a solution in the strict sense, the solutions are not usually unique, and may not depend continuously on the data.

Different approaches have been used to circumvent these. One involves linearizing the problem, but this can result in significant loss of accuracy. A second approach uses nonlinear optimization and relies on initial apriori information on object shape and electric properties. While this yields more accurate results, its reliability depends on the accuracy of the initial information and is computationally expensive.

A more recent approach uses a qualitative method utilizing "sets" of linear integral equations of the first kind. While these are faster and don't require apriori information, they can only provide estimates for sets of points. In this paper, the authors use a linear sampling method in combination with a gap functional to take into account near fields instead of far fields. This results in higher accuracy.


Story Source:

The above story is based on materials provided by Society for Industrial and Applied Mathematics. Note: Materials may be edited for content and length.


Journal Reference:

  1. F. Delbary, M. Brignone, G. Bozza, R. Aramini, and M. Piana. A Visualization Method for Breast Cancer Detection Using Microwaves. SIAM J. Appl. Math., Volume 70, Issue 7, pp. 2509-2533; July 6, 2010 DOI: 10.1137/090774720

Cite This Page:

Society for Industrial and Applied Mathematics. "Mathematical models for breast cancer detection with microwave tomography are cheaper and less risky, research finds." ScienceDaily. ScienceDaily, 12 July 2010. <www.sciencedaily.com/releases/2010/07/100707091209.htm>.
Society for Industrial and Applied Mathematics. (2010, July 12). Mathematical models for breast cancer detection with microwave tomography are cheaper and less risky, research finds. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2010/07/100707091209.htm
Society for Industrial and Applied Mathematics. "Mathematical models for breast cancer detection with microwave tomography are cheaper and less risky, research finds." ScienceDaily. www.sciencedaily.com/releases/2010/07/100707091209.htm (accessed September 18, 2014).

Share This



More Health & Medicine News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Artificial Sweetener Could Promote Diabetes

Artificial Sweetener Could Promote Diabetes

Newsy (Sep. 17, 2014) Doctors once thought artificial sweeteners lacked the health risks of sugar, but a new study says they can impact blood sugar levels the same way. Video provided by Newsy
Powered by NewsLook.com
Ebola Vaccine Trial Gets Underway at Oxford University

Ebola Vaccine Trial Gets Underway at Oxford University

AFP (Sep. 17, 2014) A healthy British volunteer is to become the first person to receive a new vaccine for the Ebola virus after US President Barack Obama called for action against the epidemic and warned it was "spiralling out of control." Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Obesity Rates Steady Even As Americans' Waistlines Expand

Obesity Rates Steady Even As Americans' Waistlines Expand

Newsy (Sep. 17, 2014) Researchers are puzzled as to why obesity rates remain relatively stable as average waistlines continue to expand. Video provided by Newsy
Powered by NewsLook.com
President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins