Featured Research

from universities, journals, and other organizations

Single neurons can detect sequences

Date:
August 13, 2010
Source:
University College London
Summary:
Single neurons in the brain are surprisingly good at distinguishing different sequences of incoming information according to new research. The study shows that single neurons, and indeed even single dendrites, the tiny receiving elements of neurons, can very effectively distinguish between different temporal sequences of incoming information.

A neuron in the visual cortex of the mouse was filled with a fluorescent dye so that the dendrites could be visualised. A laser was targeted to small spots on single dendrites to activate groups of inputs in different orders. The electrical response of the neuron was recorded and was found to be be different for each of the input sequences.
Credit: Tiago Branco/Hausser Lab: UCL

Single neurons in the brain are surprisingly good at distinguishing different sequences of incoming information according to new research by UCL neuroscientists.

The study, published August 12 in Science and carried out by researchers based at the Wolfson Institute for Biomedical Research at UCL, shows that single neurons, and indeed even single dendrites, the tiny receiving elements of neurons, can very effectively distinguish between different temporal sequences of incoming information.

This challenges the widely held view that this kind of processing in the brain requires large numbers of neurons working together, as well as demonstrating how the basic components of the brain are exceptionally powerful computing devices in their own right.

First author Tiago Branco said: "In everyday life, we constantly need to use information about sequences of events in order to understand the world around us. For example, language, a collection of different sequences of similar letters or sounds assembled into sentences, is only given meaning by the order in which these sounds or letters are assembled.

"The brain is remarkably good at processing sequences of information from the outside world. For example, modern computers will still struggle to decode a rapidly spoken sequence of words that a 5 year-old child will have no trouble understanding. How the brain does so well at distinguishing one sequence of events from another is not well understood but, until now, the general belief has been that this job is done by large numbers of neurons working in concert with each other."

Using a mouse model, the researchers studied neurons in areas of the brain which are responsible for processing sensory input from the eyes and the face. To probe how these neurons respond to variation in the order of a number of inputs, they used a laser to activate inputs on the dendrites in precisely defined patterns and recorded the resulting electrical responses of the neurons.

Surprisingly, they found that each sequence produced a different response, even when it was delivered to a single dendrite. Furthermore, using theoretical modelling, they were able to show that the likelihood that two sequences can be distinguished from each other is remarkably high.

Senior author Professor Michael Hausser commented: "This research indicates that single neurons are reliable decoders of temporal sequences of inputs, and that they can play a significant role in sorting and interpreting the enormous barrage of inputs received by the brain.

"This new property of neurons and dendrites adds an important new element to the "toolkit" for computation in the brain. This feature is likely to be widespread across many brain areas and indeed many different animal species, including humans."

Funding for this study was provided by the Gatsby Charitable Foundation and the Wellcome Trust.


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tiago Branco, Beverley A. Clark, and Michael Hausser. Dendritic discrimination of temporal input sequences in cortical neurons. Science, August 12 2010 DOI: 10.1126/science.1189664

Cite This Page:

University College London. "Single neurons can detect sequences." ScienceDaily. ScienceDaily, 13 August 2010. <www.sciencedaily.com/releases/2010/08/100812151632.htm>.
University College London. (2010, August 13). Single neurons can detect sequences. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/08/100812151632.htm
University College London. "Single neurons can detect sequences." ScienceDaily. www.sciencedaily.com/releases/2010/08/100812151632.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins