## Featured Research

from universities, journals, and other organizations

# How to weigh a star using a moon

Date:
October 16, 2010
Source:
Harvard-Smithsonian Center for Astrophysics
Summary:
How do astronomers weigh a star that's trillions of miles away and way too big to fit on a bathroom scale? In most cases they can't, although they can get a best estimate using computer models of stellar structure. An astrophysicist says that in special cases, we can weigh a star directly.

Artist's concept of an exoplanet and its moon transiting a sun-like star. Such a system could be used to directly weigh the star.
Credit: David A. Aguilar (CfA)

How do astronomers weigh a star that's trillions of miles away and way too big to fit on a bathroom scale? In most cases they can't, although they can get a best estimate using computer models of stellar structure.

New work by astrophysicist David Kipping says that in special cases, we can weigh a star directly. If the star has a planet, and that planet has a moon, and both of them cross in front of their star, then we can measure their sizes and orbits to learn about the star.

"I often get asked how astronomers weigh stars. We've just added a new technique to our toolbox for that purpose," said Kipping, a predoctoral fellow at the Harvard-Smithsonian Center for Astrophysics.

Astronomers have found more than 90 planets that cross in front of, or transit, their stars. By measuring the amount of starlight that's blocked, they can calculate how big the planet is relative to the star. But they can't know exactly how big the planet is unless they know the actual size of the star. Computer models give a very good estimate but in science, real measurements are best.

Kipping realized that if a transiting planet has a moon big enough for us to see (by also blocking starlight), then the planet-moon-star system could be measured in a way that lets us calculate exactly how large and massive all three bodies are.

"Basically, we measure the orbits of the planet around the star and the moon around the planet. Then through Kepler's Laws of Motion, it's possible to calculate the mass of the star," explained Kipping.

The process isn't easy and requires several steps. By measuring how the star's light dims when planet and moon transit, astronomers learn three key numbers: 1) the orbital periods of the moon and planet, 2) the size of their orbits relative to the star, and 3) the size of planet and moon relative to the star.

Plugging those numbers into Kepler's Third Law yields the density of the star and planet. Since density is mass divided by volume, the relative densities and relative sizes gives the relative masses. Finally, scientists measure the star's wobble due to the planet's gravitational tug, known as the radial velocity. Combining the measured velocity with the relative masses, they can calculate the mass of the star directly.

"If there was no moon, this whole exercise would be impossible," stated Kipping. "No moon means we can't work out the density of the planet, so the whole thing grinds to a halt."

Kipping hasn't put his method into practice yet, since no star is known to have both a planet and moon that transit. However, NASA's Kepler spacecraft should discover several such systems.

"When they're found, we'll be ready to weigh them," said Kipping.

This research will appear in the Monthly Notices of the Royal Astronomical Society.

Story Source:

The above story is based on materials provided by Harvard-Smithsonian Center for Astrophysics. Note: Materials may be edited for content and length.

Journal Reference:

1. David M. Kipping. Binning is sinning: morphological light-curve distortions due to finite integration time. Monthly Notices of the Royal Astronomical Society, 2010; DOI: 10.1111/j.1365-2966.2010.17242.x

Harvard-Smithsonian Center for Astrophysics. "How to weigh a star using a moon." ScienceDaily. ScienceDaily, 16 October 2010. <www.sciencedaily.com/releases/2010/10/101015140801.htm>.
Harvard-Smithsonian Center for Astrophysics. (2010, October 16). How to weigh a star using a moon. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2010/10/101015140801.htm
Harvard-Smithsonian Center for Astrophysics. "How to weigh a star using a moon." ScienceDaily. www.sciencedaily.com/releases/2010/10/101015140801.htm (accessed August 21, 2014).

## More Space & Time News

Thursday, August 21, 2014

### Featured Research

from universities, journals, and other organizations

### Featured Videos

from AP, Reuters, AFP, and other news services

Space to Ground: Hello Georges

### Space to Ground: Hello Georges

NASA (Aug. 18, 2014) — Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Tiny Satellites, Like The One Tossed From ISS, On The Rise

### Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) — The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
This Week @ NASA, August 15, 2014

### This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) — Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Space Shuttle Replica Hoisted for Landmark Exhibit

### Space Shuttle Replica Hoisted for Landmark Exhibit

Reuters - US Online Video (Aug. 14, 2014) — The space shuttle replica Independence has been hoisted atop Space Center Houston's shuttle carrier aircraft, creating a monument to the shuttle program which will open to the public next year. Rough Cut (no reporter narration). Video provided by Reuters

## Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):

Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

## In Other News

... from NewsDaily.com

Save/Print:
Share:

## Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

## Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

## Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web