Featured Research

from universities, journals, and other organizations

Experimental Alzheimer's disease drugs might help patients with nerve injuries

Date:
April 14, 2011
Source:
Johns Hopkins Medical Institutions
Summary:
Drugs already in development to treat Alzheimer's disease may eventually be tapped for a different purpose altogether: re-growing the ends of injured nerves to relieve pain and paralysis. According to a new study, experimental compounds originally designed to combat a protein that builds up in Alzheimer's-addled brains appear to make crushed or cut nerve endings grow back significantly faster, a potential boon for those who suffer from neuropathies or traumatic injuries.

Drugs already in development to treat Alzheimer's disease may eventually be tapped for a different purpose altogether: re-growing the ends of injured nerves to relieve pain and paralysis. According to a new Johns Hopkins study, experimental compounds originally designed to combat a protein that builds up in Alzheimer's-addled brains appear to make crushed or cut nerve endings grow back significantly faster, a potential boon for those who suffer from neuropathies or traumatic injuries.

Related Articles


The new drugs target a protein known as "Beta-Site amyloid precursor protein cleaving enzyme 1," or BACE1, which plays a key role in generating the amyloid protein plaques that are thought to gum up normal nerve signaling in the brain. Previous laboratory research showed that BACE1 also is involved in creating the insulation material known as myelin, which coats the projections that nerve cells extend to connect with each other, as well as generating a molecular cascade that causes these projections to degenerate when they're injured.

Based on these earlier findings, assistant professor of neurology Mohamed Farah, Ph.D., professor of neurology John Griffin, M.D., and their colleagues tried blocking the action of BACE1 to analyze the effect on injured axon projections. The researchers started their experiments with mice whose ability to make BACE1 had been genetically knocked out. After these animals' sciatic nerves were cut or crushed, the scientists closely watched what happened as the axons regenerated.

Compared to normal mice that make BACE1, the animals lacking this protein cleaned up the debris around the injury site significantly faster. Since this debris can inhibit regeneration, Farah and his colleagues expected that the axons would re-grow faster. Sure enough, the cut ends of the animals' nerve cells generated more new sprouts, which grew into extensions that reached their targets -- muscles or other nerve cells -- days faster than the mice that made BACE1.

Hopeful that compounds able to block BACE1 activity would have a similar effect, Farah and Griffin's team worked with two experimental drugs already developed to target Alzheimer's disease (BACE1 inhibitor IV, produced by Calbiochem, and WAY 258131, a Wyeth compound that was synthesized by researchers at Johns Hopkins Brain Science Institute for this study). Mice given either of the two drugs systemically after nerve injuries had a similar increase in re-growth, though less pronounced. This was expected, explains Farah, since the drugs dampen the effect of BACE1 without removing it entirely as in the genetic knockout mice.

The Hopkins researchers said their proof of the principle work, published in the Journal of Neuroscience on April 13, was reason to celebrate. "Anything that speeds nerve re-growth could be enormously helpful to people with nerve injuries caused by a range of injuries and diseases, from diabetic neuropathy to motorcycle accidents," says Farah.

"After an injury, the environment around nerves and their target tissue sometimes degenerates before the nerves can heal, which kills the chances that the nerve will re-grow," he explains. "If we can help nerves re-grow faster, we increase the chances that they can reach their target and become healthy again after injury."

As a next step, the researchers plan to test the experimental compounds in other animal models of nerve injury, including neuropathies and spinal cord injuries.

"BACE1 inhibitors are a major drug target for many drug companies for Alzheimer's," says Griffin. "Our work may suggest that these drugs could have great utility in a very large clinical population with tremendous unmet need. Validation of our early research in other animal models of nerve injury will set the stage for further clinical investigation."

Other Johns Hopkins researchers who participated in this study include Bao Han Pan, Ph.D., Paul N. Hoffman, M.D., Ph.D., Dana Ferraris, Ph.D., Takashi Tsukamoto, Ph.D., Thien Nguyen, M.D., Ph.D., Philip C. Wong, Ph.D., Donald L. Price, M.D., and Barbara S. Slusher, Ph.D., M.B.A.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Experimental Alzheimer's disease drugs might help patients with nerve injuries." ScienceDaily. ScienceDaily, 14 April 2011. <www.sciencedaily.com/releases/2011/04/110413151630.htm>.
Johns Hopkins Medical Institutions. (2011, April 14). Experimental Alzheimer's disease drugs might help patients with nerve injuries. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2011/04/110413151630.htm
Johns Hopkins Medical Institutions. "Experimental Alzheimer's disease drugs might help patients with nerve injuries." ScienceDaily. www.sciencedaily.com/releases/2011/04/110413151630.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins