Featured Research

from universities, journals, and other organizations

Simple security for wireless

Date:
August 24, 2011
Source:
Massachusetts Institute of Technology
Summary:
Researchers have demonstrated the first wireless security scheme that can protect against "man-in-the-middle" attacks -- but doesn't require a password.

In early August, at the Def Con conference -- a major annual gathering of computer hackers -- someone apparently hacked into many of the attendees' cell phones, in what may have been the first successful breach of a 4G cellular network. If early reports are correct, the incident was a man-in-the-middle (MITM) attack, so called because the attacker interposes himself between two other wireless devices.

Coincidentally, a week later, at the 20th Usenix Security Symposium, MIT researchers presented the first security scheme that can automatically create connections between wireless devices and still defend against MITM attacks. Previously, thwarting the attacks required password protection or some additional communication mechanism, such as an infrared transmitter.

Showcasing novel ways to breach security is something of a tradition at Def Con. In previous years, MITM attacks had been launched against attendees' Wi-Fi devices; indeed, the MIT researchers demonstrated the effectiveness of their new scheme on a Wi-Fi network. But in principle, MITM attacks can target any type of wireless connection, not only between devices (phones or laptops) and base stations (cell towers or Wi-Fi routers), but also between a phone and a wireless headset, a medical implant and a wrist-mounted monitor, or a computer and a wireless speaker system.

Key change

Ordinarily, when two wireless devices establish a secure connection, they swap cryptographic keys -- the unique codes they use to encrypt their transmissions. In an MITM attack, the attacker tries to broadcast his own key at the exact moment that the key swap takes place. If he's successful, one or both of the devices will mistake him for the other, and he will be able to intercept their transmissions.

Password protection can thwart MITM attacks, assuming the attacker doesn't know the password. But that's not always a safe assumption. At a hotel or airport that offers Wi-Fi, for instance, all authorized users are generally given the same password, which means that any one of them could launch an MITM attack against the others. Moreover, many casual computer users find it so complicated to set up home Wi-Fi networks that they don't bother to protect them; when they do, they often select passwords that are too simple to provide much security. That's led to the marketing of Wi-Fi transmitters with push-button configuration: To establish a secure link, you simply push a button on top of the transmitter and a corresponding button (or virtual button) on your wireless device. But such systems remain vulnerable to MITM attacks.

"None of these solutions are quite satisfactory," says Nickolai Zeldovich, the Douglas Ross (1954) Career Development Assistant Professor of Software Technology, who developed the new security scheme together with Dina Katabi, the Class of 1947 Career Development Associate Professor of Computer Science and Engineering, as well as postdoc Nabeel Ahmed and graduate student Shyam Gollakota, all of MIT's Department of Electrical Engineering and Computer Science. "The cool thing about this work is that it takes some insight from somewhat of a different field, from wireless communication -- actually, fairly low-level details about what can happen in terms of wireless signals -- and observes that, hey, if you assume some of these properties about wireless networks, you can actually get stronger guarantees."

Strength in silence

In an MITM attack, the attacker needs to drown out the signal from the legitimate sender. But the researchers' new system ensures that any attempt to do so will be detected. The trick is that, after transmitting its encryption key, the legitimate sender transmits a second string of numbers related to the key by a known mathematical operation. But whereas the key is converted into a wireless signal in the ordinary way -- it's encoded as changes in the amplitude of a radio wave -- the second string of numbers is encoded as alternating bursts of radiation and silences.

If an attacker tries to substitute his key for the legitimate sender's, he'll have to send the corresponding sequence of bursts and silences. But that sequence will differ from the legitimate one. Through the silences of one, the receiver will hear the bursts of the other. The overlapping sequences will look to the receiver like a wholly new sequence, which won't match up with the transmitted key, indicating an MITM attack.

Of course, the attacker could try to drown out the entirety of the legitimate transmission and then send his own key. But that would require broadcasting a signal of such long duration that it, too, would alert the receiver to an attack.

The reports of an MITM attack on 4G phones are still being verified, and 4G itself is a vague term that encompasses many different technical approaches. But if the reports prove true, then cell phones, too, could benefit from the MIT researchers' security scheme. "You could imagine that the same protocol could be used in cell phone networks as well," Zeldovich says. "At the design level, the idea sounds like it should be applicable."

Article.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Simple security for wireless." ScienceDaily. ScienceDaily, 24 August 2011. <www.sciencedaily.com/releases/2011/08/110822111751.htm>.
Massachusetts Institute of Technology. (2011, August 24). Simple security for wireless. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/08/110822111751.htm
Massachusetts Institute of Technology. "Simple security for wireless." ScienceDaily. www.sciencedaily.com/releases/2011/08/110822111751.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins