Featured Research

from universities, journals, and other organizations

Nanoparticles seek and destroy glioblastoma in mice

Date:
October 5, 2011
Source:
Sanford-Burnham Medical Research Institute
Summary:
Scientists have combined a tumor-homing peptide, a cell-killing peptide, and a nanoparticle. When administered to mice with glioblastoma that could not otherwise be treated, this new nanosystem eradicated most tumors in one model and significantly delayed tumor development in another.

Glioblastoma is one of the most aggressive forms of brain cancer. Rather than presenting as a well-defined tumor, glioblastoma will often infiltrate the surrounding brain tissue, making it extremely difficult to treat surgically or with chemotherapy or radiation. Likewise, several mouse models of glioblastoma have proven completely resistant to all treatment attempts. In a new study, a team led by scientists at Sanford-Burnham Medical Research Institute (Sanford-Burnham) and the Salk Institute for Biological Studies developed a method to combine a tumor-homing peptide, a cell-killing peptide, and a nanoparticle that both enhances tumor cell death and allows the researchers to image the tumors. When used to treat mice with glioblastoma, this new nanosystem eradicated most tumors in one model and significantly delayed tumor development in another.

These findings were published the week of October 3 in the Proceedings of the National Academy of Sciences.

"This is a unique nanosystem for two reasons. First, linking the cell-killing peptide to nanoparticles made it possible for us to deliver it specifically to tumors, virtually eliminating the killer peptide's toxicity to normal tissues. Second, ordinarily researchers and clinicians are happy if they are able to deliver more drugs to a tumor than to normal tissues. We not only accomplished that, but were able to design our nanoparticles to deliver the killer peptide right where it acts -- the mitochondria, the cell's energy-generating center," said Erkki Ruoslahti, M.D., Ph.D., senior author of the study and distinguished professor in both Sanford-Burnham's NCI-designated Cancer Center in La Jolla and the Center for Nanomedicine, a Sanford-Burnham collaboration with the University of California, Santa Barbara.

The nanosystem developed in this study is made up of three elements. First, a nanoparticle acts as the carrier framework for an imaging agent and for two peptides (short proteins). One of these peptides guides the nanoparticle and its payload specifically to cancer cells and the blood vessels that feed them by binding cell surface markers that distinguish them from normal cells. This same peptide also drives the whole system inside these target cells, where the second peptide wreaks havoc on the mitochondria, triggering cellular suicide through a process known as apoptosis.

Together, these peptides and nanoparticles proved extremely effective at treating two different mouse models of glioblastoma. In the first model, treated mice survived significantly longer than untreated mice. In the second model, untreated mice survived for only eight to nine weeks. In sharp contrast, treatment with this nanosystem cured all but one of ten mice. What's more, in addition to providing therapy, the nanoparticles could aid in diagnosing glioblastoma; they are made of iron oxide, which makes them -- and therefore the tumors they target -- visible by MRI, the same technique already used to diagnose many health conditions.

In a final twist, the researchers made the whole nanosystem even more effective by administering it to the mice in conjunction with a third peptide. Dr. Ruoslahti and his team previously showed that this peptide, known as iRGD, helps co-administered drugs penetrate deeply into tumor tissue. iRGD has been shown to substantially increase treatment efficacy of various drugs against human breast, prostate, and pancreatic cancers in mice, achieving the same therapeutic effect as a normal dose with one-third as much of the drug. Here, iRGD enhanced nanoparticle penetration and therapeutic efficacy.

"In this study, our patients were mice that developed glioblastomas with the same characteristics as observed in humans with the disease. We treated them systemically with the nanoparticles. Once the nanoparticles reached the tumors' blood vessels, they delivered their payload (a drug) directly to the cell's power producer, the mitochondria. By destroying the blood vessels and also some surrounding tumor cells, we were able to cure some mice and extend the lifespan of the rest," said Dinorah Friedmann-Morvinski, Ph.D., co-first author of the study and post-doctoral research associate in the laboratory of Inder Verma, Ph.D. at the Salk Institute.

The study was funded by: the National Cancer Institute and the National Institute of Allergy and Infectious Diseases, parts of the National Institutes of Health; the Leducq Foundation; the Merieux Foundation; Ipsen/Biomeasure; and the H.N. and Frances C. Berger Foundation. The full list of authors includes: Lilach Agemya, Center for Nanomedicine; Dinorah Friedmann-Morvinski, Salk Institute; Venkata Ramana Kotamraju, Center for Nanomedicine; Lise Roth, Center for Nanomedicine; Kazuki N. Sugahara, Sanford-Burnham; Olivier M. Girard, University of California, San Diego; Robert F. Mattrey, University of California, San Diego; Inder M. Verma, Salk Institute; and Erkki Ruoslahti, Sanford-Burnham's NCI-designated Cancer Center and Center for Nanomedicine at the University of California, Santa Barbara.


Story Source:

The above story is based on materials provided by Sanford-Burnham Medical Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lilach Agemy, Dinorah Friedmann-Morvinski, Venkata Ramana Kotamraju, Lise Roth, Kazuki N. Sugahara, Olivier M. Girard, Robert F. Mattrey, Inder M. Verma, and Erkki Ruoslahti. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. PNAS, October 3, 2011 DOI: 10.1073/pnas.1114518108

Cite This Page:

Sanford-Burnham Medical Research Institute. "Nanoparticles seek and destroy glioblastoma in mice." ScienceDaily. ScienceDaily, 5 October 2011. <www.sciencedaily.com/releases/2011/10/111003151828.htm>.
Sanford-Burnham Medical Research Institute. (2011, October 5). Nanoparticles seek and destroy glioblastoma in mice. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/10/111003151828.htm
Sanford-Burnham Medical Research Institute. "Nanoparticles seek and destroy glioblastoma in mice." ScienceDaily. www.sciencedaily.com/releases/2011/10/111003151828.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins