Science News
from research organizations

Advancing understanding of energy storage mechanisms

Date:
March 5, 2012
Source:
Drexel University
Summary:
Materials researchers have given the engineering world a better look at the inner functions of the electrodes of supercapacitors -- the low-cost, lightweight energy storage devices used in many electronics, transportation and many other applications.
Share:
       
FULL STORY

The figure above (Molecular Dynamics simulations by the group of Mathieu Salanne): shows ionic liquid surrounded by two porous carbon electrodes. It explains how the positive (red) and negative (green) ions interact with the carbon surface. The charging mechanism involves the exchange of ions between the bulk and the electrode. This simulation yields much higher capacitance values than in models using simplified regular electrode geometries.
Credit: Image courtesy of Drexel University

An international team of materials researchers including Drexel University's Dr. Yury Gogotsi has given the engineering world a better look at the inner functions of the electrodes of supercapacitors -- the low-cost, lightweight energy storage devices used in many electronics, transportation and many other applications. In a piece published in the March 4 edition of Nature Materials, Gogotsi, and his collaborators from universities in France and England, take another step toward finding a solution to the world's demand for sustainable energy sources.

Gogotsi, a professor in Drexel's College of Engineering and director of the A.J. Drexel Nanotechnology Institute, teamed with Mathieu Salanne, Céline Merlet and Benjamin Rotenberg from the Université Paris 06, Paul A. Madden from Oxford University and Patrice Simon and Pierre-Louis Taberna of Université Paul Sabatier. What the group has produced is the first quantitative picture of the structure of ionic liquid absorbed inside disordered microporous carbon electrodes in supercapacitors. Supercapacitors have the capability of storing and delivering more power than batteries; moreover, they can last for up to a million of charge-discharge cycles. These characteristics are significant because of the intermittent nature of renewable energy production.

According to the researchers, the excellent performance of supercapacitors is due to ion adsorption in porous carbon electrodes. The molecular mechanism of ion behavior in pores smaller than one nanometer-one billionth of a meter- remains poorly understood. The mechanism proposed in this research opens the door for the design of materials with improved energy storage capabilities.

The authors suggest that in order to build higher-performance materials, researchers should know whether the increase in energy storage is due to only a large surface area or if the pore size and geometry also play a role. The results of this study provide guidance for development of better electrical energy storage devices that will ultimately enable wide utilization of renewable energy sources.

"This breakthrough in understanding of energy storage mechanisms became possible due to collaboration between research groups from four universities in three countries," Gogotsi said. "Moreover, the team used carbon structure models developed by our colleagues Dr. Jeremy Palmer and Dr. Keith Gubbins from the North Carolina State University. This is a clear demonstration of the importance of collaboration between scientists working in different disciplines and even in different countries."


Story Source:

The above post is reprinted from materials provided by Drexel University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Céline Merlet, Benjamin Rotenberg, Paul A. Madden, Pierre-Louis Taberna, Patrice Simon, Yury Gogotsi, Mathieu Salanne. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 2012; DOI: 10.1038/NMAT3260

Cite This Page:

Drexel University. "Advancing understanding of energy storage mechanisms." ScienceDaily. ScienceDaily, 5 March 2012. <www.sciencedaily.com/releases/2012/03/120305150704.htm>.
Drexel University. (2012, March 5). Advancing understanding of energy storage mechanisms. ScienceDaily. Retrieved September 4, 2015 from www.sciencedaily.com/releases/2012/03/120305150704.htm
Drexel University. "Advancing understanding of energy storage mechanisms." ScienceDaily. www.sciencedaily.com/releases/2012/03/120305150704.htm (accessed September 4, 2015).

Share This Page: