Featured Research

from universities, journals, and other organizations

Advancing understanding of energy storage mechanisms

Date:
March 5, 2012
Source:
Drexel University
Summary:
Materials researchers have given the engineering world a better look at the inner functions of the electrodes of supercapacitors -- the low-cost, lightweight energy storage devices used in many electronics, transportation and many other applications.

The figure above (Molecular Dynamics simulations by the group of Mathieu Salanne): shows ionic liquid surrounded by two porous carbon electrodes. It explains how the positive (red) and negative (green) ions interact with the carbon surface. The charging mechanism involves the exchange of ions between the bulk and the electrode. This simulation yields much higher capacitance values than in models using simplified regular electrode geometries.
Credit: Image courtesy of Drexel University

An international team of materials researchers including Drexel University's Dr. Yury Gogotsi has given the engineering world a better look at the inner functions of the electrodes of supercapacitors -- the low-cost, lightweight energy storage devices used in many electronics, transportation and many other applications. In a piece published in the March 4 edition of Nature Materials, Gogotsi, and his collaborators from universities in France and England, take another step toward finding a solution to the world's demand for sustainable energy sources.

Gogotsi, a professor in Drexel's College of Engineering and director of the A.J. Drexel Nanotechnology Institute, teamed with Mathieu Salanne, Céline Merlet and Benjamin Rotenberg from the Université Paris 06, Paul A. Madden from Oxford University and Patrice Simon and Pierre-Louis Taberna of Université Paul Sabatier. What the group has produced is the first quantitative picture of the structure of ionic liquid absorbed inside disordered microporous carbon electrodes in supercapacitors. Supercapacitors have the capability of storing and delivering more power than batteries; moreover, they can last for up to a million of charge-discharge cycles. These characteristics are significant because of the intermittent nature of renewable energy production.

According to the researchers, the excellent performance of supercapacitors is due to ion adsorption in porous carbon electrodes. The molecular mechanism of ion behavior in pores smaller than one nanometer-one billionth of a meter- remains poorly understood. The mechanism proposed in this research opens the door for the design of materials with improved energy storage capabilities.

The authors suggest that in order to build higher-performance materials, researchers should know whether the increase in energy storage is due to only a large surface area or if the pore size and geometry also play a role. The results of this study provide guidance for development of better electrical energy storage devices that will ultimately enable wide utilization of renewable energy sources.

"This breakthrough in understanding of energy storage mechanisms became possible due to collaboration between research groups from four universities in three countries," Gogotsi said. "Moreover, the team used carbon structure models developed by our colleagues Dr. Jeremy Palmer and Dr. Keith Gubbins from the North Carolina State University. This is a clear demonstration of the importance of collaboration between scientists working in different disciplines and even in different countries."


Story Source:

The above story is based on materials provided by Drexel University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Céline Merlet, Benjamin Rotenberg, Paul A. Madden, Pierre-Louis Taberna, Patrice Simon, Yury Gogotsi, Mathieu Salanne. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 2012; DOI: 10.1038/NMAT3260

Cite This Page:

Drexel University. "Advancing understanding of energy storage mechanisms." ScienceDaily. ScienceDaily, 5 March 2012. <www.sciencedaily.com/releases/2012/03/120305150704.htm>.
Drexel University. (2012, March 5). Advancing understanding of energy storage mechanisms. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/03/120305150704.htm
Drexel University. "Advancing understanding of energy storage mechanisms." ScienceDaily. www.sciencedaily.com/releases/2012/03/120305150704.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins