Featured Research

from universities, journals, and other organizations

Disentangling information from photons

Date:
July 12, 2012
Source:
Springer
Summary:
Theoretical physicists have found a new method of reliably assessing the information contained in photon pairs used for applications in cryptography and quantum computing. The findings are so robust that they enable access to the information even when the measurements on photon pairs are imperfect.

Theoretical physicist Filippo Miatto and colleagues from the University of Strathclyde, Glasgow, UK, have found a new method of reliably assessing the information contained in photon pairs used for applications in cryptography and quantum computing. The findings, published in The European Physical Journal D, are so robust that they enable access to the information even when the measurements on photon pairs are imperfect.

The authors focused on photon pairs described as being in a state of quantum entanglement: i.e., made up of many superimposed pairs of states. This means that these photon pairs are intimately linked by common physical characteristics such as a spatial property called orbital angular momentum, which can display a different value for each superimposed state.

Miatto and his colleagues relied on a tool capable of decomposing the photon pairs' superimposed states onto the multiple dimensions of a Hilbert space, which is a virtual space described by mathematical equations. This approach allowed them to understand the level of the photon pairs' entanglement.

The authors showed that the higher the degree of entanglement, the more accessible the information that photon pairs carry. This means that generating entangled photon pairs with a sufficiently high dimension -- that is with a high enough number of decomposed photon states that can be measured -- could help reveal their information with great certainty.

As a result, even an imperfect measurement of photons' physical characteristics does not affect the amount of information that can be gained, as long as the level of entanglement was initially strong. These findings could lead to quantum information applications with greater resilience to errors and a higher information density coding per photon pair. They could also lead to cryptography applications where fewer photons carry more information about complex quantum encryption keys.


Story Source:

The above story is based on materials provided by Springer. Note: Materials may be edited for content and length.


Journal Reference:

  1. F. M. Miatto, T. Brougham, A. M. Yao. Cartesian and polar Schmidt bases for down-converted photons. The European Physical Journal D, 2012; 66 (7) DOI: 10.1140/epjd/e2012-30063-y

Cite This Page:

Springer. "Disentangling information from photons." ScienceDaily. ScienceDaily, 12 July 2012. <www.sciencedaily.com/releases/2012/07/120712131748.htm>.
Springer. (2012, July 12). Disentangling information from photons. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2012/07/120712131748.htm
Springer. "Disentangling information from photons." ScienceDaily. www.sciencedaily.com/releases/2012/07/120712131748.htm (accessed October 22, 2014).

Share This



More Computers & Math News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Free Math App Is A Teacher's Worst Nightmare

Free Math App Is A Teacher's Worst Nightmare

Newsy (Oct. 22, 2014) — New photo-recognition software from MicroBlink, called PhotoMath, solves linear equations and simple math problems with step-by-step results. Video provided by Newsy
Powered by NewsLook.com
Rate Hike Worries Down on Inflation Data

Rate Hike Worries Down on Inflation Data

Reuters - Business Video Online (Oct. 22, 2014) — Inflation remains well under control according to the latest consumer price index, giving the Federal Reserve more room to keep interest rates low for awhile. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins