Featured Research

from universities, journals, and other organizations

Researchers turn skin cells into brain cells, a promising path to better Parkinson's treatment

Date:
July 17, 2012
Source:
Johns Hopkins Medicine
Summary:
Using adult stem cells, researchers say they have generated the type of human neuron specifically damaged by Parkinson's disease (PD) and used various drugs to stop the damage. Their experiments on cells in the laboratory could speed the search for new drugs to treat the incurable neurodegenerative disease, but also, they say, may lead them back to better ways of using medications that previously failed in clinical trials.

Using adult stem cells, Johns Hopkins researchers and a consortium of colleagues nationwide say they have generated the type of human neuron specifically damaged by Parkinson's disease (PD) and used various drugs to stop the damage.

Their experiments on cells in the laboratory, reported in the July 4 issue of the journal Science Translational Medicine, could speed the search for new drugs to treat the incurable neurodegenerative disease, but also, they say, may lead them back to better ways of using medications that previously failed in clinical trials.

"Our study suggests that some failed drugs should actually work if they were used earlier, and especially if we could diagnose PD before tremors and other symptoms first appear," says one of the study's leaders, Ted M. Dawson, M.D., Ph.D., a professor of neurology at the Johns Hopkins University School of Medicine.

Dawson and his colleagues, working as part of a National Institute of Neurological Disorders and Stroke consortium, created three lines of induced pluripotent stem (iPS) cells derived from the skin cells of adults with PD. Two of the cell lines had the mutated LRKK2 gene, a hallmark of the most common genetic cause of PD. Induced pluripotent stem cells are adult cells that have been genetically reprogrammed to their most primitive state. Under the right circumstances, they can develop into most or all of the 200 cell types in the human body.

In the laboratory, the consortium scientists used the iPS cells to create dopamine neurons, those that bear the brunt of PD. Around age 60, people who have the disorder typically begin to show symptoms, including shaking (tremors) and difficulty with walking, movement and coordination. In the United States, at least 500,000 people are believed to have PD, and an estimated 50,000 new cases are reported annually.

Dawson says the ability to experiment with a form of "Parkinson's in a dish" should lead to further understanding of how the disease originates, develops and behaves in humans. Although scientists have been able to stop the disease in mice, the compounds used to do so have not worked in people, suggesting that human PD behaves differently than animal models of the disorder. Dawson, director of Johns Hopkins' Institute for Cell Engineering, says the researchers began with the belief that PD is strongly linked to disruption of the dopamine neurons' mitochondria, the energy-making power plants of the cells. Mitochondria undergo regular turnover in which they fuse together and then split apart. Normal neurons make new mitochondria and degrade older mitochondria in a balanced way to supply just the amount of energy needed.

PD, Dawson says, is believed to damage this system, leaving too few functional mitochondria and producing too many brain-damaging oxygen-free radicals.

Dawson and his colleagues looked for -- and found -- evidence of impaired mitochondria in the neurons they derived from PD patients.

They also found that the neurons they generated from PD patients were more susceptible to stressors, such as the pesticide rotenone, placed on them in the lab. Those neurons were more likely to become damaged or to die than the neurons derived from the skin of healthy individuals.

Satisfied that their stem cell-generated neurons were behaving like dopamine brain cells, the scientists next set out to see if they could slow the damage occurring in the PD neurons by introducing various compounds to the cells. They tested Coenzyme Q10, rapamycin and the LRRK2 kinase inhibitor GW5074, all of which are known to reverse mitochondrial defects in animals. The cells responded favorably to all three treatments, preventing stressors from continuing to damage the mitochondria.

Dawson says more than 20 clinical trials have been conducted in people with PD using drugs designed to slow the disease's progression. All of them have failed. Coenzyme Q10 worked in the iPS cells derived from PD patients.

"This suggests the need to treat people before they actually manifest the disease," he says.

Dawson cautioned that the consortium's work is at its earliest stages, and that application of the findings may be years away. Among other barriers, he says, is the lack of a way to diagnose PD before tremors and other symptoms appear. In addition, although several gene mutations have been linked to PD, there could be more, making a simple genetic test for the disease unlikely in the near term.

Moreover, the majority of PD has no known specific genetic link.

Other members of the research consortium include Harvard Medical School, Northwestern University's Feinberg School of Medicine, Columbia University, Massachusetts General Hospital, University of Pennsylvania School of Medicine, State University of New York at Buffalo, and the Mayo Clinic in Jacksonville, Fla.

Other Johns Hopkins researchers who contributed to the study include Shaida Andrabi, Ph.D.; Li Chen; Leslie A. Scarffe and Valina L. Dawson, Ph.D.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. O. Cooper, H. Seo, S. Andrabi, C. Guardia-Laguarta, J. Graziotto, M. Sundberg, J. R. McLean, L. Carrillo-Reid, Z. Xie, T. Osborn, G. Hargus, M. Deleidi, T. Lawson, H. Bogetofte, E. Perez-Torres, L. Clark, C. Moskowitz, J. Mazzulli, L. Chen, L. Volpicelli-Daley, N. Romero, H. Jiang, R. J. Uitti, Z. Huang, G. Opala, L. A. Scarffe, V. L. Dawson, C. Klein, J. Feng, O. A. Ross, J. Q. Trojanowski, V. M.- Y. Lee, K. Marder, D. J. Surmeier, Z. K. Wszolek, S. Przedborski, D. Krainc, T. M. Dawson, O. Isacson. Pharmacological Rescue of Mitochondrial Deficits in iPSC-Derived Neural Cells from Patients with Familial Parkinson's Disease. Science Translational Medicine, 2012; 4 (141): 141ra90 DOI: 10.1126/scitranslmed.3003985

Cite This Page:

Johns Hopkins Medicine. "Researchers turn skin cells into brain cells, a promising path to better Parkinson's treatment." ScienceDaily. ScienceDaily, 17 July 2012. <www.sciencedaily.com/releases/2012/07/120717102405.htm>.
Johns Hopkins Medicine. (2012, July 17). Researchers turn skin cells into brain cells, a promising path to better Parkinson's treatment. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2012/07/120717102405.htm
Johns Hopkins Medicine. "Researchers turn skin cells into brain cells, a promising path to better Parkinson's treatment." ScienceDaily. www.sciencedaily.com/releases/2012/07/120717102405.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins