Featured Research

from universities, journals, and other organizations

Protein-based coating could help rehabilitate long-term brain function

Date:
July 31, 2012
Source:
American Friends of Tel Aviv University
Summary:
Scientists have developed a bioactive coating which not only "camouflages" electrodes in the brain tissue but also suppresses the brain's immune response. With this method, researchers hope to turn the short-term effects of deep brain stimulation into a long-term solution.

Brain-computer interfaces are at the cutting edge for treatment of neurological and psychological disorder, including Parkinson's, epilepsy, and depression. Among the most promising advance is deep brain stimulation (DBS) -- a method in which a silicon chip implanted under the skin ejects high frequency currents that are transferred to the brain through implanted electrodes that transmit and receive the signals. These technologies require a seamless interaction between the brain and the hardware.

But there's a catch. Identified as foreign bodies by the immune system, the brain attacks the electrodes and forms a barrier to the brain tissue, making it impossible for the electrodes to communicate with brain activity. So while the initial implantation can diminish symptoms, after a few short years or even months, the efficacy of this therapy begins to wane.

Now Aryeh Taub of Tel Aviv University's School of Psychological Sciences, along with Prof. Matti Mintz, Roni Hogri and Ari Magal of TAU's School of Psychological Sciences and Prof. Yosi Shacham-Diamand of TAU's School of Electrical Engineering, has developed a bioactive coating which not only "camouflages" the electrodes in the brain tissue, but actively suppresses the brain's immune response. By using a protein called an "interleukin (IL)-1 receptor antagonist" to coat the electrodes, the multi-disciplinary team of researchers has found a potential resolution to turn a method for short-term relief into a long-term solution. This development was reported in the Journal of Biomedical Materials Research.

Limiting the immune response

To overcome the creation of the barrier between the tissue and the electrode, the researchers sought to develop a method for placing the electrode in the brain tissue while hiding the electrode from the brain's immune defenses. Previous research groups have coated the electrodes with various proteins, says Taub, but the TAU team decided to take a different approach by using a protein that is active within the brain itself, thereby suppressing the immune reaction against the electrodes.

In the brain, the IL-1 receptor antagonist is crucial for maintaining physical stability by localizing brain damage, Taub explains. For example, if a person is hit on the head, this protein works to create scarring in specific areas instead of allowing global brain scarring. In other words, it stops the immune system from overreacting. The team's coating, the first to be developed from this particular protein, not only integrates the electrodes into the brain tissue, but allows them to contribute to normal brain functioning.

In pre-clinical studies with animal models, the researchers found that their coated electrodes perform better than both non-coated and "naοve protein"-coated electrodes that had previously been examined. Measuring the number of damaged cells at the site of implantation, researchers found no apparent difference between the site of electrode implantation and healthy brain tissue elsewhere, Taub says. In addition, evidence suggests that the coated electrodes will be able to function for long periods of time, providing a more stable and long-term treatment option.

Restoring brain function

Approximately 30,000 people worldwide are currently using deep brain stimulation (DBS) to treat neurological or psychological conditions. And DBS is only the beginning. Taub believes that, in the future, an interface with the ability to restore behavioral or motor function lost due to tissue damage is achievable -- especially with the help of their new electrode coating.

"We duplicate the function of brain tissue onto a silicon chip and transfer it back to the brain," Taub says, explaining that the electrodes will pick up brain waves and transfer these directly to the chip. "The chip then does the computation that would have been done in the damaged tissue, and feeds the information back into the brain -- prompting functions that would have otherwise gotten lost."


Story Source:

The above story is based on materials provided by American Friends of Tel Aviv University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Aryeh H. Taub, Roni Hogri, Ari Magal, Matti Mintz, Yosi Shacham-Diamand. Bioactive anti-inflammatory coating for chronic neural electrodes. Journal of Biomedical Materials Research Part A, 2012; 100A (7): 1854 DOI: 10.1002/jbm.a.34152

Cite This Page:

American Friends of Tel Aviv University. "Protein-based coating could help rehabilitate long-term brain function." ScienceDaily. ScienceDaily, 31 July 2012. <www.sciencedaily.com/releases/2012/07/120731123517.htm>.
American Friends of Tel Aviv University. (2012, July 31). Protein-based coating could help rehabilitate long-term brain function. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/07/120731123517.htm
American Friends of Tel Aviv University. "Protein-based coating could help rehabilitate long-term brain function." ScienceDaily. www.sciencedaily.com/releases/2012/07/120731123517.htm (accessed April 16, 2014).

Share This



More Mind & Brain News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) — Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) — A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
App Fights Jet Lag With The Power Of Math

App Fights Jet Lag With The Power Of Math

Newsy (Apr. 13, 2014) — Researchers at the University of Michigan have designed an app to fight jet lag by adjusting your body's light intake. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins