Featured Research

from universities, journals, and other organizations

Computer scientists reveal how aquatic Olympic gold is captured -- above and below the surface

Date:
August 9, 2012
Source:
New York University
Summary:
Computer scientists have isolated the movements of Olympic swimmers and divers through a cutting-edge technique that reveals their motions above and below the water’s surface.

Computer scientists have isolated the movements of Olympic swimmers and divers through a cutting-edge technique that reveals their motions above and below the water's surface.
Credit: Image courtesy of New York University

Computer scientists have isolated the movements of Olympic swimmers and divers through a cutting-edge technique that reveals their motions above and below the water's surface.

The work, conducted by Manhattan Mocap, LLC, together with New York University's Movement Laboratory and The New York Times, analyzes Dana Vollmer, who won three gold medals at the 2012 Summer Olympics in London, as well as Abby Johnston, who won a silver medal in synchronized diving, and Nicholas McCrory, a bronze medalist in synchronized diving.

The research team, headed by Chris Bregler, a professor in NYU's Courant Institute of Mathematical Sciences, followed these athletes during their training in pools across the United States this spring and deployed ground-breaking motion-capture techniques to unveil their movement above and under the water's surface.

Their work may be viewed here: http://manhattanmocap.com/olympics2012.

Of particular note is the team's creation of a system, AquaCap (TM), which captures underwater motion. It was used to display Vollmer's butterfly stroke and underwater dolphin kick, breaking down the technique the swimmer used to win the gold medal in the 100-meter butterfly in world-record time. Through a comparison of motions, the video illustrates how closely Vollmer's kick resembles that of a dolphin swimming through the water.

Subsequent work analyzed Johnston and McCrory, showing through previously unseen angles their summersaults from 3- and 10-meter diving boards and marking another technical breakthrough in motion capture.

Motion capture records movements of individuals, who wear suits that reflect light to enable the recording of their actions. It then translates these movements into digital models for 3D animation often used in video games and movies, such as "Avatar" and "Iron Man." Bregler and his team used a more sophisticated computer-vision technology, which allows for the tracking and recording of these movements straight from video and without the use of motion capture suits.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "Computer scientists reveal how aquatic Olympic gold is captured -- above and below the surface." ScienceDaily. ScienceDaily, 9 August 2012. <www.sciencedaily.com/releases/2012/08/120809162538.htm>.
New York University. (2012, August 9). Computer scientists reveal how aquatic Olympic gold is captured -- above and below the surface. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2012/08/120809162538.htm
New York University. "Computer scientists reveal how aquatic Olympic gold is captured -- above and below the surface." ScienceDaily. www.sciencedaily.com/releases/2012/08/120809162538.htm (accessed April 24, 2014).

Share This



More Computers & Math News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New FCC Rules Trigger Death Of Net Neutrality?

Will New FCC Rules Trigger Death Of Net Neutrality?

Newsy (Apr. 24, 2014) — The Federal Communications Commission will reportedly propose new rules for Net neutrality that could undermine the principles of a free and open Web. Video provided by Newsy
Powered by NewsLook.com
Apple Beats Estimates, Most Looking to Second Half of 2014

Apple Beats Estimates, Most Looking to Second Half of 2014

TheStreet (Apr. 24, 2014) — TheStreet's Stephanie Link and Real Money Contributor Dan Nathan discuss Apple's first quarter results. Link and Nathan expected the tech giant to lower guidance for the current quarter which they felt could send shares lower and present a buying opportunity. Nathan says options are cheap because Apple has been aggressively buying back shares. Video provided by TheStreet
Powered by NewsLook.com
Raw: Obama Plays Soccer With Japanese Robot

Raw: Obama Plays Soccer With Japanese Robot

AP (Apr. 24, 2014) — President Obama briefly played soccer with a robot during his visit to Japan on Thursday. The President has been emphasizing technology along with security concerns during his visit. (April 24) Video provided by AP
Powered by NewsLook.com
Obama Encourages Japanese Student-Scientists

Obama Encourages Japanese Student-Scientists

AP (Apr. 24, 2014) — President Obama spoke with student innovators in Japan and urged them to take part in increased opportunities for student exchanges with the US. (April 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins