Featured Research

from universities, journals, and other organizations

New neural brain-to-bone pathway controls skeletal development

Date:
September 3, 2012
Source:
Hebrew University of Jerusalem
Summary:
Researchers have discovered that a neuronal pathway -- part of the autonomic nervous system -- reaches the bones and participates in the control of bone development.

Researchers at the Hebrew University of Jerusalem have discovered that a neuronal pathway -- part of the autonomic nervous system -- reaches the bones and participates in the control of bone development.

The newly discovered pathway has a key role in controlling bone density during adolescence, which in turn determines the skeletal resistance to fracture throughout one's entire life, say the researchers. They emphasize that understanding the mechanisms connecting the brain and the bones could have implications for possible future therapies to better deal with osteoporosis and various neural disorders. The findings of the Hebrew University team are published this week in the American journal PNAS (Proceedings of the National Academy of Sciences).

Participants in the project were researchers from the Hebrew University's Bone Laboratory, headed by Prof. Itai Bab, in collaboration with Prof. Raz Yirmia, the head of the Laboratory for Brain and Behavioral Research, plus research students Alon Bajayo and Vardit Kram and master's students Arik Bar and Marilyn Bachar. Additional collaborators were Dr. Adam Denes from the University of Manchester, UK, and Prof. Alberta Zallone from the University of Bari, Italy.

The autonomic nervous system, by which the brain monitors and regulates the physiological functioning of the internal organs, includes two subsystems, called "sympathetic" and "parasympathetic." Each of these subsystems has its own, distinct neural pathways. In general, the sympathetic nervous system is perhaps best known for mediating the neuronal and hormonal responses to stress. The sympathetic pathway, on the other hand, generally works to promote maintenance of the body at rest.

Previous studies by the Hebrew University researchers and others showed that the sympathetic nervous system reaches the skeleton and slows down bone development. On the other hand, until now, there was no information on skeletal parasympathetic activity there.

To demonstrate that there are indeed parasympathetic responses in the skeleton, the researchers injected a weakened rabies virus into the thigh bones of mice. The rabies virus has a unique feature -- it migrates from its injection site in the periphery along nerve fibers towards the brain. Following injection to the thigh bone, the virus was found in the brain in regions known to be specific for the parasympathetic subsystem.

In the past, these same researchers reported that the activity of a protein called interleukin-1 influences bone development. Now they noticed that this influence is very similar to that of the parasympathetic subsystem. Indeed, the researchers showed that deactivating interleukin-1 activity in the brain of laboratory mice paralyzes parasympathetic activity in the bone and slows down skeletal development. They further found that the newly discovered neuronal pathway, which includes interleukin-1 in the brain and the parasympathetic subsystem, also controls the heart rate.

As in the bone and the heart, the new pathway might have an important function as well in other organs controlled by the autonomic nervous system. Prof. Yirmiya said that "low bone density and osteoporosis often appear together with neuropsychiatric disorders such as depression, Alzheimer's disease and epilepsy, since interleukin-1 in the brain and the parasympathetic system are often damaged in these disorders. Finding the disease mechanisms in these cases has a huge potential for the development of new therapies," he added.

"The connection between the brain and the bone in general and the involvement of the newly discovered pathway in particular is a new area of research about which we still know very little," said Prof. Bab. "The new findings, discovered in our Hebrew University laboratories, highlight for the first time an important physiological role for the connection between interleukin-1 in the brain and the autonomic nervous system.

The research has been conducted as part of a project to study the connection between the activity of interleukin-1 in the brain, the parasympathetic system and the skeleton. It was supported by the German-Israeli Foundation for Scientific Research and Development and by the Israel Science Foundation.


Story Source:

The above story is based on materials provided by Hebrew University of Jerusalem. Note: Materials may be edited for content and length.


Cite This Page:

Hebrew University of Jerusalem. "New neural brain-to-bone pathway controls skeletal development." ScienceDaily. ScienceDaily, 3 September 2012. <www.sciencedaily.com/releases/2012/09/120903143102.htm>.
Hebrew University of Jerusalem. (2012, September 3). New neural brain-to-bone pathway controls skeletal development. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2012/09/120903143102.htm
Hebrew University of Jerusalem. "New neural brain-to-bone pathway controls skeletal development." ScienceDaily. www.sciencedaily.com/releases/2012/09/120903143102.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins