Featured Research

from universities, journals, and other organizations

Enigmatic nematics: Law of hydrodynamics governing the way internally driven systems behave could explain their complex structure

Date:
October 29, 2012
Source:
Springer Science+Business Media
Summary:
Physicists use hydrodynamics to understand the physical mechanism responsible for changes in the long-range order of groups of particles. Researchers have now focused on ordered groups of elongated self-propelled particles. They have studied the breakdown of long-range order due to fluctuations that render them unstable and give rise to complex structures, in a new study.

Physicists use hydrodynamics to understand the physical mechanism responsible for changes in the long-range order of groups of particles. Particularly, Aparna Baskaran of Brandeis University, Massachusetts, USA, and Cristina Marchetti of Syracuse University, New York, USA, focused on ordered groups of elongated self-propelled particles. They studied the breakdown of long-range order due to fluctuations that render them unstable and give rise to complex structures, in a study about to be published in EPJ E.

The authors coined the term self-propelled nematics to refer to internally drivenelongated particles that spontaneously align head to tail, like tinned sardines. These are characterised by an ordered state that is stationary on average. This means that there is a long-range order, i.e., the long axes of the molecules tend to align along a preferred direction, whereas the locally preferred direction may vary throughout the medium due to local strains or disturbances.

In this study, Baskaran and Marchetti first found that a uniform nematic state can be disturbed by density fluctuations associated with an upward current of active particles. Since the density in turn controls the onset of nematic order, this phenomenon is self-regulating and universal.

They also found that an instability can be triggered by a local distortion of particles' orientation. Such a distortion results in local currents that in turn amplify the distortion, leading to an instability deep inside the nematic state.

Future research will involve solving numerically the hydrodynamic equations to test the theory presented in this study and characterise the emergent structures. Ultimately, this work may help us gain a deeper understanding of pattern formation and dynamics in a variety of internally driven systems, from epithelial cells and soil bacteria such as Myxococcus xanthus, to colloidal self-propelled nanorods.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Baskaran, M. C. Marchetti. Self-regulation in self-propelled nematic fluids. The European Physical Journal E, 2012; 35 (9) DOI: 10.1140/epje/i2012-12095-8

Cite This Page:

Springer Science+Business Media. "Enigmatic nematics: Law of hydrodynamics governing the way internally driven systems behave could explain their complex structure." ScienceDaily. ScienceDaily, 29 October 2012. <www.sciencedaily.com/releases/2012/10/121029082219.htm>.
Springer Science+Business Media. (2012, October 29). Enigmatic nematics: Law of hydrodynamics governing the way internally driven systems behave could explain their complex structure. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2012/10/121029082219.htm
Springer Science+Business Media. "Enigmatic nematics: Law of hydrodynamics governing the way internally driven systems behave could explain their complex structure." ScienceDaily. www.sciencedaily.com/releases/2012/10/121029082219.htm (accessed August 29, 2014).

Share This




More Matter & Energy News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins