Featured Research

from universities, journals, and other organizations

Enigmatic nematics: Law of hydrodynamics governing the way internally driven systems behave could explain their complex structure

Date:
October 29, 2012
Source:
Springer Science+Business Media
Summary:
Physicists use hydrodynamics to understand the physical mechanism responsible for changes in the long-range order of groups of particles. Researchers have now focused on ordered groups of elongated self-propelled particles. They have studied the breakdown of long-range order due to fluctuations that render them unstable and give rise to complex structures, in a new study.

Physicists use hydrodynamics to understand the physical mechanism responsible for changes in the long-range order of groups of particles. Particularly, Aparna Baskaran of Brandeis University, Massachusetts, USA, and Cristina Marchetti of Syracuse University, New York, USA, focused on ordered groups of elongated self-propelled particles. They studied the breakdown of long-range order due to fluctuations that render them unstable and give rise to complex structures, in a study about to be published in EPJ E.

The authors coined the term self-propelled nematics to refer to internally drivenelongated particles that spontaneously align head to tail, like tinned sardines. These are characterised by an ordered state that is stationary on average. This means that there is a long-range order, i.e., the long axes of the molecules tend to align along a preferred direction, whereas the locally preferred direction may vary throughout the medium due to local strains or disturbances.

In this study, Baskaran and Marchetti first found that a uniform nematic state can be disturbed by density fluctuations associated with an upward current of active particles. Since the density in turn controls the onset of nematic order, this phenomenon is self-regulating and universal.

They also found that an instability can be triggered by a local distortion of particles' orientation. Such a distortion results in local currents that in turn amplify the distortion, leading to an instability deep inside the nematic state.

Future research will involve solving numerically the hydrodynamic equations to test the theory presented in this study and characterise the emergent structures. Ultimately, this work may help us gain a deeper understanding of pattern formation and dynamics in a variety of internally driven systems, from epithelial cells and soil bacteria such as Myxococcus xanthus, to colloidal self-propelled nanorods.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Baskaran, M. C. Marchetti. Self-regulation in self-propelled nematic fluids. The European Physical Journal E, 2012; 35 (9) DOI: 10.1140/epje/i2012-12095-8

Cite This Page:

Springer Science+Business Media. "Enigmatic nematics: Law of hydrodynamics governing the way internally driven systems behave could explain their complex structure." ScienceDaily. ScienceDaily, 29 October 2012. <www.sciencedaily.com/releases/2012/10/121029082219.htm>.
Springer Science+Business Media. (2012, October 29). Enigmatic nematics: Law of hydrodynamics governing the way internally driven systems behave could explain their complex structure. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2012/10/121029082219.htm
Springer Science+Business Media. "Enigmatic nematics: Law of hydrodynamics governing the way internally driven systems behave could explain their complex structure." ScienceDaily. www.sciencedaily.com/releases/2012/10/121029082219.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins